ACS Catalysis
Research Article
Mo2C(011)and/or (ii) adsorbed oxygen from O2 can be
incorporated into the bulk structure of Mo2C at higher values
of the O/Mobulk ratio.13,54
oxygen, as inferred from in situ CO titration and m-cresol HDO
reactions on O2−0.05 kPa (333 K)−Mo2C, H2O−1 kPa (333
K)−Mo2C, and CO2−1 kPa (333 K)−Mo2C catalysts.
We showed that O2 can deposit ∼0.03 O/Mobulk (Table 1)
of oxygen on a fresh Mo2C at a treatment pressure of 0.05 kPa,
whereas 1 kPa of H2O, CO2, and m-cresol is required to achieve
the same value (Table 1). We increased H2O and CO2
treatment pressures (5−6 kPa) and temperatures (333, 363,
and 423 K) to investigate the amount of oxygen H2O and CO2
can deposit under ambient pressure. The values of O/Mobulk
before HDO on H2O−5 kPa (423 K)−Mo2C, CO2−5 kPa
(423 K)−Mo2C, CO2−6 kPa (363 K)−Mo2C, and CO2−6 kPa
(333 K)−Mo2C catalysts were found to be similar (Table 3, O/
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Additional results for TPR, in situ CO titration, and m-
cresol HDO studies; XRD patterns and XPS data for
AUTHOR INFORMATION
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
■
Table 3. O/Mobulk before m-Cresol HDO on H2O-Modified
and CO2-Modified Mo2C Catalysts
O/Mobulk before HDO
H2O−5 kPa (423 K)−Mo2C
CO2−5 kPa (423 K)−Mo2C
CO2−6 kPa (363 K)−Mo2C
CO2−6 kPa (333 K)−Mo2C
CO2−1 kPa (333 K)−Mo2C
0.050 0.004
0.046 0.005
0.050 0.002
0.053 0.003
0.035 0.010
ACKNOWLEDGMENTS
■
This research was supported by National Science Foundation
Catalysis and Biocatalysis Program (CBET Award No.
1510661). Parts of this work were carried out in the
Characterization Facility at the University of Minnesota,
which receives partial support from NSF through the
MRSEC program. We thank Ms. Seema Thakral for assistance
with the XRD analysis and Bing Luo for XPS measurements.
Mobulk ≈ 0.046−0.053) and comparable to the amount of
oxygen deposited from m-cresol HDO at 423 K (Table 1,
∼0.05
0.01 O/Mobulk). These results demonstrate that
oxygen adsorbed in amounts exceeding O/Mobulk ≈ 0.05
0.01 can be achieved by varying the O2 treatment pressure at a
treatment temperature of 333 K; however, oxygenates such as
CO2, H2O, and m-cresol can only deposit O/Mobulk ≈ 0.05
0.01, even at a higher treatment pressure and temperature (∼6
kPa and 423 K, respectively).
REFERENCES
■
(1) Schaidle, J. A.; Blackburn, J.; Farberow, C. A.; Nash, C.; Steirer,
K. X.; Clark, J.; Robichaud, D. J.; Ruddy, D. A. ACS Catal. 2016, 6,
1181−1197.
4. CONCLUSIONS
(2) Bej, S. K.; Thompson, L. T. Appl. Catal., A 2004, 264, 141−150.
(3) Xiong, K.; Yu, W.; Vlachos, D. G.; Chen, J. G. ChemCatChem
2015, 7, 1402−1421.
Kinetic and in situ chemical titration studies on vapor-phase m-
cresol hydrodeoxygenation (HDO) showed that two distinct
sitesone of them having metal-like site characteristicsare
involved in toluene synthesis. m-Cresol HDO was used as a
probe reaction to study the effect of oxygenate modification on
the metal-like function of Mo2C. The amount of adsorbed
oxygen (O/Mobulk) on O2−1 kPa (333 K)−Mo2C, H2O−1 kPa
(333 K)−Mo2C, and CO2−1 kPa (333 K)−Mo2C catalysts,
prepared by pretreating fresh Mo2C catalysts in 1 kPa of O2,
CO2, and H2O at 333 K, was quantified using temperature-
programmed surface reaction with H2 (TPSR). The value of O/
Mobulk before HDO on O2−1 kPa (333 K)−Mo2C (0.23
0.02) is ∼6 times higher than that on H2O−1 kPa (333 K)−
Mo2C and CO2−1 kPa (333 K)−Mo2C (O/Mobulk before
HDO ≈ 0.036), demonstrating that molecular oxygen has a
higher propensity to deposit oxygen on a fresh Mo2C sample.
The value of O/Mobulk after HDO was found to correlate with
toluene synthesis rates, suggesting that the relevant surface
environment for catalysis is that measured under reaction
conditions. A 10-fold decrease in toluene synthesis rates was
observed on O2−1 kPa (333 K)−Mo2C, compared to that on
fresh Mo2C, H2O−1 kPa (333 K)−Mo2C, and CO2−1 kPa
(333 K)−Mo2C catalysts; however, turnover frequencies
(TOFs) of toluene synthesis measured from in situ CO
titration on these samples are similar (∼(2.1−4.5) × 10−3 mol
(4) Han, J.; Duan, J.; Chen, P.; Lou, H.; Zheng, X.; Hong, H.
ChemSusChem 2012, 5, 727−733.
(5) Gosselink, R. W.; Stellwagen, D. R.; Bitter, J. H. Angew. Chem.,
Int. Ed. 2013, 52, 5089−5092.
(6) Jongerius, A. L.; Bruijnincx, P. C. A.; Weckhuysen, B. M. Green
Chem. 2013, 15, 3049−3056.
́
(7) Prasomsri, T.; Shetty, M.; Murugappan, K.; Roman-Leshkov, Y.
Energy Environ. Sci. 2014, 7, 2660−2669.
(8) Boullosa-Eiras, S.; Lødeng, R.; Bergem, H.; Stocker, M.;
̈
Hannevold, L.; Blekkan, E. A. Catal. Today 2014, 223, 44−53.
(9) Ren, H.; Yu, W.; Salciccioli, M.; Chen, Y.; Huang, Y.; Xiong, K.;
Vlachos, D. G.; Chen, J. G. ChemSusChem 2013, 6, 798−801.
(10) Chen, C.-J.; Lee, W.-S.; Bhan, A. Appl. Catal., A 2016, 510, 42−
48.
(11) Lee, W.-S.; Wang, Z.; Zheng, W.; Vlachos, D. G.; Bhan, A. Catal.
Sci. Technol. 2014, 4, 2340−2352.
(12) Wang, T.; Luo, Q.; Li, Y.-W. W.; Wang, J.; Beller, M.; Jiao, H.
Appl. Catal., A 2014, 478, 146−156.
(13) Ranhotra, G. S.; Haddix, G. W.; Bell, A. T.; Reimer, J. A. J. Catal.
1987, 108, 24−39.
(14) Ramírez-Caballero, G. E.; Burgos, J. C.; Balbuena, P. B. J. Phys.
Chem. C 2009, 113, 15658−15666.
(15) Gom
20, 215601.
́ ́
ez-Gualdron, D. A.; Balbuena, P. B. Nanotechnology 2009,
(16) Ko, E. I.; Madix, R. J. Surf. Sci. 1981, 109, 221−238.
(17) Stottlemyer, A. L.; Kelly, T. G.; Meng, Q.; Chen, J. G. Surf. Sci.
Rep. 2012, 67, 201−232.
(18) Wang, T.; Li, Y. W.; Wang, J. G.; Beller, M.; Jiao, H. J. J. Phys.
Chem. C 2014, 118, 3162−3171.
−1
molCO s−1), indicating that adsorbed oxygen poisons the
metal-like sites responsible for m-cresol. The effect of adsorbed
oxygen on toluene synthesis is independent of the source of
1121
ACS Catal. 2017, 7, 1113−1122