294
H.W. Park et al. / Applied Catalysis A: General 453 (2013) 287–294
Pd/15Cs2.5H0.5PW12O40/ACA-SO3H catalyst served as a stable and
reusable catalyst in the decomposition of 4-phenoxyphenol.
[2] N. Savage, Nature 474 (2011) 9–11.
[3] M.F. Demirbas, Appl. Energy 86 (2009) 151–161.
[4] J.H. Clark, J. Chem. Technol. Biotechnol. 82 (2007) 603–609.
[5] S.N. Naik, V.V. Goud, P.K. Rout, A.K. Dalai, Renew. Sustain. Energy Rev. 14 (2010)
578–597.
4. Conclusions
[6] A.-C. Carlos, H. Pakdel, C. Roy, Bioresour. Technol. 79 (2001) 277–299.
[7] H.H. Nimz, R. Casten, Holz Roh Werkst 44 (1986) 207–212.
[8] A. Oasmaa, R. Alen, Bioresour. Technol. 45 (1993) 189–194.
[9] M. Kleinert, T. Barth, Energy Fuels 22 (2008) 1371–1379.
[10] C. Amen-Chen, H. Pakdel, C. Roy, Bioresour. Technol. 79 (2001) 277–299.
[11] D.C. Elliott, Energy Fuels 21 (2007) 1792–1815.
[12] R.W. Thring, J. Breau, Fuel 75 (1996) 795–800.
Activated carbon aerogel (ACA) bearing sulfonic acid (ACA-
SO3H) was prepared by
a sulfonation of activated carbon
aerogel using H2SO4, and subsequently, Cs2.5H0.5PW12O40 was
impregnated onto ACA-SO3H to form XCs2.5H0.5PW12O40/ACA-
SO3H with
a variation of Cs2.5H0.5PW12O40 content (X = 10,
[13] D.V. Evtuguin, A.I.D. Daniel, A.J.D. Silvestre, F.M.L. Amad, C.P. Neto, J. Mol. Catal.
A: Chem. 154 (2000) 217–224.
15, 20, 25, and 30 wt%). Palladium catalysts supported on
XCs2.5H0.5PW12O40/ACA-SO3H were then prepared by an incip-
ient wetness impregnation method, and they were applied
to the decomposition of 4-phenoxyphenol. Conversion of 4-
phenoxyphenol and total yield for main products (cyclohexanol,
benzene, and phenol) over Pd/XCs2.5H0.5PW12O40/ACA-SO3H
(X = 10, 15, 20, 25, and 30 wt%) were in the range of 82.1–94.8%
and 43.8–67.5%, respectively. Conversion of 4-phenoxyphenol and
total yield for main products were closely related to the acidity of
the catalysts. Conversion of 4-phenoxyphenol and total yield for
main products increased with increasing acidity of the catalysts.
Among the catalysts tested, Pd/15Cs2.5H0.5PW12O40/ACA-SO3H
with the largest acidity showed the highest conversion of 4-
phenoxyphenol (94.8%) and total yield for main products (67.5%).
Conversion of 4-phenoxyphenol and total yield for main product
over Pd/15Cs2.5H0.5PW12O40/ACA-SO3H were much higher than
those over palladium catalyst supported on activated carbon aero-
gel (Pd/ACA) and palladium catalyst supported on activated carbon
aerogel bearing sulfonic acid (Pd/ACA-SO3H). It was also found that
Pd/15Cs2.5H0.5PW12O40/ACA-SO3H (X = 10, 15, 20, 25, and 30 wt%)
was an efficient and reusable catalyst in the decomposition of 4-
phenoxyphenol. It is concluded that acidity of the catalysts played
an important role in determining the catalytic performance in the
decomposition of 4-phenoxyphenol.
[14] A. Cyr, F. Chilts, P. Jeanson, A. Martel, L. Brossard, J. Lessard, H. Menard, Can. J.
Chem. 78 (2000) 307–315.
[15] H.W. Park, S. Park, D.R. Park, J.H. Choi, I.K. Song, Korean J. Chem. Eng. 28 (2010)
1177–1180.
[16] H.W. Park, S. Park, D.R. Park, J.H. Choi, I.K. Song, Catal. Commun. 12 (2010) 1–4.
[17] N. Yan, C. Zhao, P.J. Dyson, C. Wang, L.-T. Liu, Y. Kou, ChemSusChem 1 (2008)
626–629.
[18] H.W. Park, U.G. Hong, Y.J. Lee, I.K. Song, Catal. Commun. 20 (2012)
89–93.
[19] H.W. Park, U.G. Hong, Y.J. Lee, J.H. Choi, I.K. Song, Appl. Catal. A: Gen. 437–438
(2012) 112–119.
[20] M.T. Klein, P.S. Virk, Ind. Eng. Chem. Fundam. 22 (1983) 35–45.
[21] P.F. Britt, M.K. Kidder, A.C. Buchanan, Energy Fuels 21 (2007)
3102–3108.
[22] P.F. Britt, A.C. Buchanan, E.A. Malcolm, J. Org. Chem. 60 (1995)
6523–6536.
[23] B. Mahdavi, A. Lafrance, A. Martel, J. Lessard, H. Menard, J. Appl. Electrochem.
27 (1997) 605–611.
[24] P. Dabo, A. Cyr, J. Lessard, L. Brossard, H. Menard, Can. J. Chem. 77 (1999)
1225–1229.
[25] B. Fang, L. Binder, J. Power Sources 163 (2006) 616–622.
[26] C. Moreno-Castilla, F.J. Maldonado-Hodar, Carbon 43 (2005) 455–465.
[27] Y.J. Lee, J.C. Jung, S. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, I.K. Song, Curr.
Appl. Phys. 11 (2011) 1–5.
[28] Y.J. Lee, J.C. Jung, S. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, I.K. Song, Korean J.
Chem. Eng. 28 (2011) 492–496.
[29] Y.J. Lee, J.C. Jung, J. Yi, S.-H. Baeck, J.R. Yoon, I.K. Song, Curr. Appl. Phys. 10 (2010)
682–686.
[30] Y. Hanzawa, K. Kaneko, Langmuir 12 (1996) 6167–6169.
[31] K. Kohler, R.G. Heidenreich, J.G.E. Krauter, J. Pietsch, Chem. Eur. J. 8 (2002)
622–631.
[32] C. Schmit, H. Probstle, J. Fricke, J. Non-Cryst. Solids 285 (2001) 277–282.
[33] S.K. Ling, H.Y. Tian, S. Wang, T. Rufford, Z.H. Zhu, C.E. Buckley, J. Colloid Interface
Sci. 357 (2011) 157–162.
Acknowledgments
[34] A. Namane, A. Mekarzia, K. Benrachedi, N. Belhaneche-Bensemra, A. Hellal, J.
Hazard. Mater. B 119 (2005) 189–194.
[35] S. Zhang, R. Fu, D. Wu, W. Xu, W. Ye, Q. Ye, Z. Chen, Carbon 42 (2004) 3209–3216.
[36] H.W. Park, U.G. Hong, Y.J. Lee, I.K. Song, Appl. Catal. A: Gen. 409 (2011) 167–173.
[37] S. Park, S.H. Lee, S.H. Song, D.R. Park, S.-H. Baeck, T.J. Kim, Y.M. Chung, S.H. Oh,
I.K. Song, Catal. Commun. 10 (2009) 391–394.
This work was supported by the National Research Foundation
of Korea Grant funded by the Korean Government (MEST) (NRF-
2009-C1AAA001-0093292).
References
[38] T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41 (1996) 113–252.
[39] H. Lee, J.C. Jung, H. Kim, Y.M. Chung, T.J. Kim, S.J. Lee, S.H. Oh, S.Y. Kim, I.K. Song,
Korean J. Chem. Eng. 26 (2009) 994–998.
[1] H.R. Bungay, Science 218 (1982) 643–646.