Journal of the American Chemical Society
Communication
Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 15983. (c) Bernasconi, L.;
Louwerse, M. J.; Baerends, E. J. Eur. J. Inorg. Chem. 2007, 3023.
(d) Geng, C.; Ye, S.; Neese, F. Angew. Chem., Int. Ed. 2010, 49, 5717.
(e) Shaik, S.; Chen, H.; Janardanan, D. Nat. Chem. 2011, 3, 19.
(5) (a) Que, L., Jr. Acc. Chem. Res. 2007, 40, 493. (b) McDonald, A. R.;
Que, L., Jr. Coord. Chem. Rev. 2013, 257, 414. (c) Ray, K.; Pfaff, F. F.;
Wang, B.; Nam, W. J. Am. Chem. Soc. 2014, 136, 13942.
by 2 are identical, indicating that 2 attacks the cyclooctene CC
bond only 16-fold faster than the 95 kcal/mol C−H bond of
cyclooctane, which was confirmed by a competitive oxidation of
equimolar amounts of the two substrates, which afforded 35%
cyclooctene oxide and 15% cyclooctanone. These results
represent the first instance for which the rates of CC and
C−H bond attack by a nonheme FeIVO complex can be
compared directly, which emphasizes the uniqueness of 2 within
the nonheme oxoiron family.20
(6) (a) England, J.; Martinho, M.; Farquhar, E. R.; Frisch, J. R.;
Bominaar, E. L.; Munck, E.; Que, L., Jr. Angew. Chem., Int. Ed. 2009, 48,
̈
3622. (b) England, J.; Guo, Y.; Van Heuvelen, K. M.; Cranswick, M. A.;
In summary, we have generated the highly reactive high-spin
oxoiron(IV) complex 2. Introduction of α-substituents on all
three pyridines of the TPA ligand weakens the ligand field about
the FeIVO unit,9a and S = 1 [FeIV(O)(TPA)(NCMe)]2+
becomes S = 2 [FeIV(O)(TQA)(NCMe)]2+ (2). The FeIVO
center goes from being unreactive toward cyclohexane at −40 °C
to being the fastest in its class to date at oxidizing cyclohexane.
The rate of 0.37 s−1 at −40 °C for oxidation of 1 M cyclohexane
by 2 compares favorably with the rate of 13 s−1 for taurine
oxidation by TauD-J at 5 °C, after correction for the 45°
temperature difference.2b This observation and the strikingly
similar spectroscopic parameters of 2 and TauD-J (Table 1)
make 2 the best electronic and functional model for TauD-J to
date.
Rohde, G. T.; Bominaar, E. L.; Munck, E.; Que, L., Jr. J. Am. Chem. Soc.
2011, 133, 11880.
̈
(7) (a) Lacy, D. C.; Gupta, R.; Stone, K. L.; Greaves, J.; Ziller, J. W.;
Hendrich, M. P.; Borovik, A. S. J. Am. Chem. Soc. 2010, 132, 12188.
(b) Bigi, J. P.; Harman, W. H.; Lassalle-Kaiser, B.; Robles, D. M.; Stich,
T. A.; Yano, J.; Britt, R. D.; Chang, C. J. J. Am. Chem. Soc. 2012, 134,
1536.
(8) Pestovsky, O.; Stoian, S.; Bominaar, E. L.; Shan, X.; Munck, E.;
̈
Que, L., Jr.; Bakac, A. Angew. Chem., Int. Ed. 2005, 44, 6871.
(9) (a) Zang, Y.; Kim, J.; Dong, Y.; Wilkinson, E. C.; Appelman, E. H.;
Que, L., Jr. J. Am. Chem. Soc. 1997, 119, 4197. (b) Paine, T. K.; Costas,
M.; Kaizer, J.; Que, L., Jr. J. Biol. Inorg. Chem. 2006, 11, 272. (c) Wei, N.;
Murthy, N. N.; Chen, Q.; Zubieta, J.; Karlin, K. D. Inorg. Chem. 1994, 33,
1953.
(10) Lim, M. H.; Rohde, J.-U.; Stubna, A.; Bukowski, M. R.; Costas, M.;
Ho, R. Y. N.; Munck, E.; Nam, W.; Que, L., Jr. Proc. Natl. Acad. Sci. U.S.A.
̈
2003, 100, 3665.
ASSOCIATED CONTENT
* Supporting Information
Experimental details, additional ESI-MS and Mossbauer data,
■
(11) Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J. D. J. Am.
Chem. Soc. 1999, 121, 7164.
(12) Seo, M. S.; Kim, N. H.; Cho, K.-B.; So, J. E.; Park, S. K.;
S
̈
DFT results and insights, kinetic data, and crystallographic data
for 1 (CIF). This material is available free of charge via the
Clem
́
ancey, M.; Garcia-Serres, R.; Latour, J.-M.; Shaik, S.; Nam, W.
Chem. Sci. 2011, 2, 1039.
(13) (a) Xue, G.; De Hont, R.; Munck, E.; Que, L., Jr. Nat. Chem. 2010,
̈
2, 400. (b) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.;
Stubna, A.; Kim, J.; Munck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc.
2004, 126, 472.
(14) Jackson, T. A.; Rohde, J.-U.; Seo, M. S.; Sastri, C. V.; DeHont, R.;
̈
AUTHOR INFORMATION
Corresponding Authors
Notes
■
Stubna, A.; Ohta, T.; Kitagawa, T.; Munck, E.; Nam, W.; Que, L., Jr. J.
̈
Am. Chem. Soc. 2008, 130, 12394.
(15) The ΔEQ values were calculated using a conversion factor of
−1.43 mm s−1/AU instead of the conventional −1.7 mm s−1/AU. See
Figure 10 in: Chanda, A.; Shan, X.; Chakrabarti, M.; Ellis, W. C.;
Popescu, D. L.; Tiago de Oliveira, F.; Wang, D.; Que, L., Jr.; Collins, T.
The authors declare no competing financial interest.
J.; Munck, E.; Bominaar, E. L. Inorg. Chem. 2008, 47, 3669.
̈
ACKNOWLEDGMENTS
■
(16) Ghosh, M.; Singh, K. K.; Panda, C.; Weitz, A.; Hendrich, M. P.;
Collins, T. J.; Dhar, B. B.; Gupta, S. S. J. Am. Chem. Soc. 2014, 136, 9524.
(17) (a) Meunier, B. Chem. Rev. 1992, 92, 1411. (b) Groves, J. T.;
Nemo, T. E. J. Am. Chem. Soc. 1983, 105, 5786.
(18) (a) Balland, V.; Charlot, M.-F.; Banse, F.; Girerd, J.-J.; Mattioli, T.
A.; Bill, E.; Bartoli, J.-F.; Battioni, P.; Mansuy, D. Eur. J. Inorg. Chem.
2004, 301. (b) Ye, W.; Ho, D. M.; Friedle, S.; Palluccio, T. D.; Rybak-
Akimova, E. V. Inorg. Chem. 2012, 51, 5006. (c) Annaraj, J.; Kim, S.; Seo,
M. S.; Lee, Y.-M.; Kim, Y.; Kim, S.-J.; Choi, Y. S.; Nam, W. Inorg. Chim.
Acta 2009, 362, 1031.
(19) (a) Mas-Balleste, R.; Que, L., Jr. J. Am. Chem. Soc. 2007, 129,
́
15964. (b) Oloo, W. N.; Feng, Y.; Iyer, S.; Parmelee, S.; Xue, G.; Que, L.,
Jr. New J. Chem. 2013, 37, 3411.
(20) Betley has reported a high-spin iron(III)−imido radical complex
that can attack olefin C−H and CC bonds, the only other nonheme
high-spin iron complex to exhibit such reactivity. See: Hennessy, E. T.;
Liu, R. Y.; Iovan, D. A.; Duncan, R. A.; Betley, T. A. Chem. Sci. 2014, 5,
1526. Having more such examples will be useful for comparison.
This work was supported by grants from the National Science
Foundation (CHE-1058248 and CHE-1361773 to L.Q. and
CHE-1305111 to E.M.). A.N.B. thanks the Indo-US Science &
Technology Forum (IUSSTF) for a postdoctoral fellowship, and
M.P. and G.T.R. thank the University of Minnesota for graduate
dissertation fellowships. We thank Mr. Ang Zhou for his
assistance with 19F NMR experiments.
REFERENCES
■
(1) (a) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Jr. Chem. Rev.
2004, 104, 939. (b) Solomon, E. I.; Brunold, T. C.; Davis, M. I.;
Kemsley, J. N.; Lee, S.-K.; Lehnert, N.; Neese, F.; Skulan, A. J.; Yang, Y.-
S.; Zhou, J. Chem. Rev. 2000, 100, 235.
(2) (a) Krebs, C.; Fujimori, D. G.; Walsh, C. T.; Bollinger, J. M., Jr. Acc.
Chem. Res. 2007, 40, 484. (b) Price, J. C.; Barr, E. W.; Glass, T. E.; Krebs,
C.; Bollinger, J. M., Jr. J. Am. Chem. Soc. 2003, 125, 13008. (c) Sinnecker,
S.; Svensen, N.; Barr, E. W.; Ye, S.; Bollinger, J. M., Jr.; Neese, F.; Krebs,
C. J. Am. Chem. Soc. 2007, 129, 6168.
(3) Xiao, D. J.; Bloch, E. D.; Mason, J. A.; Queen, W. L.; Hudson, M. R.;
Planas, N.; Borycz, J.; Dzubak, A. L.; Verma, P.; Lee, K.; Bonino, F.;
Crocella, V.; Yano, J.; Bordiga, S.; Truhlar, D. G.; Gagliardi, L.; Brown,
̀
C. M.; Long, J. R. Nat. Chem. 2014, 6, 590.
(4) (a) Shaik, S.; Hirao, H.; Kumar, D. Acc. Chem. Res. 2007, 40, 532.
(b) Decker, A.; Rohde, J.-U.; Klinker, E. J.; Wong, S. D.; Que, L., Jr.;
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX