Journal of Materials Chemistry A
Paper
the Pd–PTFE interface compared to planar palladium
membranes and fast liquid diffusion of organic solvents to the
palladium layer. The supported membranes yielded similar
9 J. Lessard, in Encyclopedia of Applied Electrochemistry, ed. G.
Kreysa, K.-I. Ota and R. F. Savinell, Springer New York,
New York, NY, 2014, pp. 443–448.
hydrogenation rates to palladium foil membranes and 10 N. Singh, Y. Song, O. Y. Guti ´e rrez, D. M. Camaioni,
improved reaction rates per mass of catalyst. This study shows
that supported palladium membranes can be designed to
C. T. Campbell and J. A. Lercher, ACS Catal., 2016, 6,
7466–7470.
provide a more cost-effective and potentially scalable palladium 11 L. Coche and J. C. Moutet, J. Am. Chem. Soc., 1987, 109, 6887–
membrane reactor for electrolytic environments.
6889.
1
1
1
1
2 J. M. Chapuzet, A. Lasia and J. Lessard, Electrocatalysis, 1998,
155–159.
Conflicts of interest
3 R. S. Sherbo, R. S. Delima, V. A. Chiykowski, B. P. MacLeod
and C. P. Berlinguette, Nat. Catal., 2018, 1, 501–507.
4 C. Iwakura, Y. Yoshida and H. Inoue, J. Electroanal. Chem.,
There are no conicts to declare.
1997, 431, 43–45.
Acknowledgements
5 R. S. Sherbo, A. Kurimoto, C. M. Brown and
We are grateful to Stewart Blusson Quantum Matter Institute,
C. P. Berlinguette, J. Am. Chem. Soc., 2019, 141, 7815–7821.
the Canadian Natural Science and Engineering Research 16 S. Nishimura, Handbook of Heterogeneous Catalytic
Council (RGPIN 337345-13), Canadian Foundation for Innova-
tion (229288), Canadian Institute for Advanced Research (BSE-
Hydrogenation for Organic Synthesis, Wiley–VCH, New York,
2001.
BERL-162173), and Canada Research Chairs for nancial 17 T. Maoka and M. Enyo, Electrochim. Acta, 1981, 26, 607–614.
support. We thank Brian Ditchburn for fabricating the cells. We 18 M. A. V. Devanathan and Z. Stachurski, Proc. R. Soc. London,
also thank Dr Maria Ezhova and Mark Okon for access to the
Ser. A, 1962, 270, 90–102.
850 MHz spectrometer, Dr Yun Lung for help with GC-MS 19 Y. Kato, K. Inoue, M. Urasaki, S. Tanaka, H. Ninomiya,
experiments, and Majed Alamoudi for help with BET analysis.
ICP-OES measurements were performed by Maureen Soon in
the Pacic Centre for Isotopic and Geochemical Research. SEM
T. Minagawa, A. Sakurai and J. Ryu, Proceedings of the
International Symposium on Innovative Materials for
Processes in Energy Systems 2010, vol. 2010.
measurements were performed in the Centre for High- 20 M. Sheintuch and D. S. A. Simakov, in Membrane Reactors for
Throughput Phenogenomics at the University of British
Columbia, a facility supported by the Canada Foundation for
Innovation, British Columbia Knowledge Development Foun-
Hydrogen Production Processes, ed. M. De De Falco, L.
Marrelli and G. Iaquaniello, Springer London, London,
2011, pp. 183–200.
dation, and the UBC Faculty of Dentistry. Sputter-depositions 21 A. Criscuoli, A. Basile, E. Drioli and O. Loiacono, J. Membr.
were done at the 4D LABS shared facilities supported by the Sci., 2001, 181, 21–27.
Canada Foundation for Innovation (CFI), British Columbia 22 R. D. Dolan and N. C. Dave, Int. J. Hydrogen Energy, 2010, 35,
Knowledge Development Fund (BCKDF), Western Economic
10994–11003.
Diversication Canada (WD), and Simon Fraser University 23 H. Ramsurn and R. B. Gupta, New and Future Developments in
(SFU).
Catalysis: Chapter 15. Hydrogenation by Nanoparticle
Catalysts, Elsevier Inc. Chapters, 2013.
2
4 P. N. Rylander, Organic Syntheses with Noble Metal Catalysts,
Elsevier, 2012.
References
1
2
3
4
N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 25 T. Matsuda, I. Koike, N. Kubo and E. Kikuchi, Appl. Catal., A,
006, 103, 15729–15735. 1993, 96, 3–13.
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher and 26 S. Uemiya, T. Matsuda and E. Kikuchi, J. Membr. Sci., 1991,
Q. Mi, Chem. Rev., 2010, 110, 6446–6473.
56, 315–325.
V. A. Goltsov and T. N. Veziroglu, Int. J. Hydrogen Energy, 27 S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda and
001, 26, 909–915. E. Kikuchi, J. Membr. Sci., 1991, 56, 303–313.
R. B. Gupta, Hydrogen Fuel: Production, Transport, and 28 S. Uemiya, Sep. Purif. Methods, 1999, 28, 51–85.
2
2
Storage, CRC Press, 2008.
S. Chu and A. Majumdar, Nature, 2012, 488, 294–303.
29 R. Dittmeyer, V. H ¨o llein and K. Daub, J. Mol. Catal. A: Chem.,
2001, 173, 135–184.
K. J. Carroll, T. Burger, L. Langenegger, S. Chavez, S. T. Hunt, 30 S.-I. Niwa, Science, 2002, 295, 105–107.
5
6
Y. Rom ´a n-Leshkov and F. R. Brushett, ChemSusChem, 2016, 31 S. Yan, H. Maeda, K. Kusakabe and S. Morooka, Ind. Eng.
9
, 1904–1910.
Chem. Res., 1994, 33, 616–622.
7
8
Y. Song, U. Sanyal, D. Pangotra, J. D. Holladay, 32 J. Melendez, E. Fernandez, F. Gallucci, M. van Sint
D. M. Camaioni, O. Y. Guti ´e rrez and J. A. Lercher, J. Catal.,
018, 359, 68–75.
Annaland, P. L. Arias and D. A. Pacheco Tanaka, J. Membr.
Sci., 2017, 528, 12–23.
2
X. H. Chadderdon, D. J. Chadderdon, J. E. Matthiesen, 33 S. N. Paglieri and J. D. Way, Sep. Purif. Methods, 2002, 31, 1–
Y. Qiu, J. M. Carraher, J.-P. Tessonnier and W. Li, J. Am.
Chem. Soc., 2017, 139, 14120–14128.
169.
26594 | J. Mater. Chem. A, 2019, 7, 26586–26595
This journal is © The Royal Society of Chemistry 2019