Please do not adjust margins
Catalysis Science & Technology
DOI: 10.1039/C6CY02702D
Journal Name
ARTICLE
generated due to the lack of carbon. Therefore, W
lengths of 2-4 µm and diameters of 100-600 nm) with
2
C nanorods 15 C. H. Liang, L. Ding, C. A. Li, M. Pang, D. S. Su, W. Z. Li and Y.
M. Wang, Energ. & Environ. Sci., 2010, , 1121-1127.
6 X. M. Ma, H. Meng, M. Cai and P. K. Shen, J. Am. Chem. Soc.,
012, 134, 1954-1957.
3
(
1
1
different number of vacancy defect sites were obtained by
controlling the pyrolysis temperature, pyrolysis time,
temperature ramping rate or the introduction of hydrogen.
2
7 L. H. Bennett, J. R. Cuthill, A. J. McAlister, N. E. Erickson and
R. E. Watson, Science, 1974, 184, 563-565.
The trace amount of metal tungsten detected by XRD can be 18 D. R. Stellwagen and J. H. Bitter, Green Chem., 2015, 17, 582-
93.
9 P. Liu and J. A. Rodriguez, J. Chem. Phys., 2004, 120, 5414-
423.
5
2
still considered as defective part of W C due to carbon atom
1
2
vacancies. High pyrolysis temperature, lengthening pyrolysis
time and introduction of proper amount of hydrogen, properly
increasing temperature ramping rate are favorable to form
5
0 A. M. Alexander and J. S. J. Hargreaves, Chem. Soc. Rev.,
2010, 39, 4388-4401.
more vacancy sites which lead to higher activity in 21 D. V. Esposito and J. G. G. Chen, Energ. & Environ. Sci., 2011,
4
2 S. T. Hunt, M. Milina, A. C. Alba-Rubio, C. H. Hendon, J. A.
, 3900-3912.
hydrodeoxygenation of benzofuran. Rich vacancy sites in the
tungsten carbides exhibit excellent oxophilicity and good
scission effect on Car-O. Car-O bond is cleaved in the case of
2
Dumesic and Y. Roman-Leshkov, Science, 2016, 352, 974-
9
78.
unsaturated aromatic ring, thereby reducing the consumption 23 S. R. Vallance, S. Kingman and D. H. Gregory, Adv. Mater.,
of hydrogen. It is found that the apparent activation energy of
each chemical bond cleavage is linearly related to its bond
dissociation energy. Therefore, bond dissociation energy can
be used as an important reference for chemical bond cleavage
process in future studies.
2007, 19, 138-+.
4 A. Celzard, J. F. Mareche, G. Furdin, V. Fierro, C. Sayag and J.
2
2
Pielaszek, Green Chem., 2005,
5 C. H. Liang, P. L. Ying and C. Li, Chem. Mater., 2002, 14, 3148-
151.
26 R. Ganesan and J. S. Lee, Angew. Chem. Int. Ed., 2005, 44
557-6560.
7, 784-792.
3
,
6
2
7 C. Zhao, Y. Kou, A. A. Lemonidou, X. B. Li and J. A. Lercher,
Angew. Chem. Int. Ed., 2009, 48, 3987-3990.
Acknowledgements
2
8 A. Berenguer, T. M. Sankaranarayanan, G. Gomez, I. Moreno,
J. M. Coronado, P. Pizarro and D. P. Serrano, Green Chem.,
We gratefully acknowledge the financial support provided by
the National Natural Science Foundation of China (No.
2
016, 18, 1938-1951.
2
3
3
3
3
9 D. A. Ruddy, J. A. Schaidle, J. R. Ferrell, J. Wang, L. Moens and
J. E. Hensley, Green Chem., 2014, 16, 454-490.
0 G. Y. Li, N. Li, J. F. Yang, L. Li, A. Q. Wang, X. D. Wang, Y. Cong
and T. Zhang, Green Chem., 2014, 16, 594-599.
1 A. D. Sutton, F. D. Waldie, R. L. Wu, M. Schlaf, L. A. Silks and
21573031 and 21373038), the Fundamental Research Funds
for the Central Universities (DUT15ZD106) and Program for
Excellent Talents in Dalian City (2016RD09).
J. C. Gordon, Nature Chem., 2013,
2 C. Zhao, T. Bruck and J. A. Lercher, Green Chem., 2013, 15
720-1739.
5, 428-432.
,
Notes and references
1
1
2
R. B. Levy and M. Boudart, Science, 1973, 181, 547-549.
M. Pang, C. Liu, W. Xia, M. Muhler and C. Liang, Green
Chem., 2012, 14, 1272.
3 H. L. Wang, H. Ruan, H. S. Pei, H. M. Wang, X. W. Chen, M. P.
Tucker, J. R. Cort and B. Yang, Green Chem., 2015, 17, 5131-
5
4 M. Saidi, F. Samimi, D. Karimipourfard, T. Nimmanwudipong,
135.
3
4
5
6
M. K. Neylon, S. Choi, H. Kwon, K. E. Curry and L. T.
Thompson, Appl. Catal. A Gen., 1999, 183, 253-263.
L. Leclercq, M. Provost, H. Pastor and G. Leclercq, J. Catal.,
3
B. C. Gates and M. R. Rahimpour, Energ. & Environ. Sci.,
2
014, 7, 103-129.
5 R. Ma, W. Hao, X. Ma, Y. Tian and Y. Li, Angew. Chem. Int.
Ed., 2014, 53, 7310-7315.
1
989, 117, 384-395.
3
3
F. H. Ribeiro, R. A. D. Betta, M. Boudart, J. Baumgartner and
E. Iglesia, J. Catal., 1991, 130, 86-105.
J. B. Claridge, A. P. E. York, A. J. Brungs, C. Marquez-Alvarez,
6 N. Ji, T. Zhang, M. Y. Zheng, A. Q. Wang, H. Wang, X. D. Wang
and J. G. G. Chen, Angew. Chem. Int. Ed., 2008, 47, 8510-
J. Sloan, S. C. Tsang and M. L. H. Green, J. Catal., 1998, 180
5-100.
,
8
513.
8
3
3
7 R. Ooms, M. Dusselier, J. A. Geboers, B. Op de Beeck, R.
Verhaeven, E. Gobechiya, J. A. Martens, A. Redl and B. F.
Sels, Green Chem., 2014, 16, 695-707.
8 C. J. Zhu, T. Shen, D. Liu, J. L. Wu, Y. Chen, L. F. Wang, K. Guo,
H. J. Ying and P. K. Ouyang, Green Chem., 2016, 18, 2165-
7
W. Q. Zheng, T. P. Cotter, P. Kaghazchi, T. Jacob, B. Frank, K.
Schlichte, W. Zhang, D. S. Su, F. Schuth and R. Schlogl, J. Am.
Chem. Soc., 2013, 135, 3458-3464.
8
9
1
M. S. Mark, C. Cha-Jung and B. Aditya, Catal. Sci. Technol.
2016. 6, 602-616.
R. W. Gosselink, D. R. Stellwagen and J. H. Bitter, Angew.
Chem. Int. Ed., 2013, 52, 5089-5092.
0 Baddour. G. Frederick, Nash. P. Connor, Schaidle. A. Joshua,
Ruddy and A. Daniel, Angew. Chem. Int. Ed., 2016, 55, 9026-
2
174.
9 S. A. W. Hollak, R. W. Gosselink, D. S. van Es and J. H. Bitter,
Acs Catal., 2013, , 2837-2844.
3
4
4
3
0 J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti and
M. Niederberger, Angew. Chem. Int. Ed., 2006, 45, 261-265.
1 C. Y. Liu, Z. F. Shao, Z. H. Xiao, C. T. Williams and C. H. Liang,
Energ. & Fuels, 2012, 26, 4205-4211.
9
029.
1 D. R. Stellwagen and J. H. Bitter, Green Chem., 2015, 17, 582-
93.
2 H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu and X. W. Lou, Nature
Commun., 2015,
3 C. Wan, Y. N. Regmi and B. M. Leonard, Angew. Chem. Int.
Ed., 2014, 53, 6407-6410.
4 D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B.
E. McCandless, R. W. Birkmire and J. G. G. Chen, Angew.
Chem. Int. Ed., 2010, 49, 9859-9862.
1
1
1
1
5
6
.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 8
Please do not adjust margins