V. Nair et al. / Tetrahedron Letters 42 (2001) 6763–6765
6765
elimination of a molecule of hydrogen iodide from this
iodo sulphone would then afford the corresponding
vinyl sulphone (Scheme 4).
10. (a) Fuchs, P. L.; Braish, T. F. Chem. Rev. 1986, 86, 903;
(b) De Lucci, O.; Pasquato, L. Tetrahedron 1988, 44,
6755.
11. Truce, W. E.; Wolf, G. C. J. Am. Chem. Soc. 1971, 36,
In conclusion, we have devised a novel and very
efficient synthesis of vinyl sulphones. The experimental
simplicity and mild reaction conditions make the
present one-pot reaction attractive over the other avail-
able methods.
1727.
12. (a) Narasaka, K.; Mochizuki, T.; Hayakawa, S. Chem.
Lett. 1994, 1705; (b) Mochizuki, T.; Hayakawa, S.;
Narasaka, K. Bull. Chem. Soc. Jpn. 1996, 69, 2317.
13. All new compounds were fully characterised.
Typical experimental procedure and selected data for 3:
A mixture of styrene (104 mg, 1 mmol), p-toluene sulphi-
nate (178 mg, 1.5 mmol) and sodium iodide (224 mg, 1.5
mmol) was taken in dry acetonitrile (12 mL) in a two
necked round-bottomed flask fitted with a pressure equal-
ising funnel containing CAN (1.260 g, 2.3 mmol) dis-
solved in dry acetonitrile (8 mL). Both the solutions were
simultaneously bubbled with argon, which was deoxy-
genated by passing through Fieser’s solution for 15 min.
Then the CAN solution was added dropwise at room
temperature and the reaction mixture was stirred vigor-
ously under an argon atmosphere for 45 min. When the
reaction was completed, the solvent was removed in
vacuo, the reaction mixture was diluted with water (100
mL) and extracted using dichloromethane (4×25 mL).
The combined organic extracts were washed with water,
then with saturated sodium thiosulphate solution, fol-
lowed by saturated brine, and finally dried over anhy-
drous sodium sulphate and concentrated in vacuo.
Column chromatography on neutral alumina using hex-
ane–ethyl acetate (80:20) afforded the vinyl sulphone (211
mg, 82%) as a colourless crystalline solid, which was
recrystallised from dichloromethane–hexane mixture, mp
119–121°C. IR (KBr) wmax: 3046, 2915, 1613, 1594, 1447,
Acknowledgements
A.A., T.G.G. and L.G.N. thank the CSIR, New Delhi,
for research fellowships. The authors also thank Ms.
Soumini Mathew for high-resolution NMR spectra and
Mrs. S. Viji for elemental analysis.
References
1
2
. (a) Trahanovsky, W. S.; Robbins, M. D. J. Am. Chem.
Soc. 1971, 93, 5256; (b) Lemieux, R. U.; Ratcliffe, R. M.
Can. J. Chem. 1979, 57, 1244.
. (a) Nair, V.; Nair, L. G. Tetrahedron Lett. 1998, 39, 4585;
(b) Nair, V.; Nair, L. G.; George, T. G.; Augustine, A.
Tetrahedron 2000, 56, 7607; (c) Nair, V.; George, T. G.;
Nair, L. G.; Panicker, S. B. Tetrahedron Lett. 1999, 49,
1
195.
3
4
. Nair, V.; George, T. G. Tetrahedron Lett. 2000, 41, 3199.
. Nair, V.; Panicker, S. B.; Augustine, A.; George, T. G.;
Thomas, S. Tetrahedron 2001. (accepted for publication)
. Nair, V.; George, T. G.; Sheeba, V.; Augustine, A.;
Balagopal, L.; Nair, L. G. Synlett 2000, 1597.
1
1301, 1143, 1085, 974, 858, 810, 742, 692, 661, 536. H
NMR (300 MHz; CDCl –CCl4 v/v 3:1) 7.82 (d, 2H,
J=8.1 Hz, ArH), 7.64 (d, 1H, J=15.4 Hz, olefinic H),
7.48–7.45 (m, 2H, ArH), 7.39–7.37 (m, 3H, ArH), 7.33 (d,
2H, J=8.1 Hz, ArH) 6.82 (d, 1H, J=15.4 Hz, olefinic
5
3
6
7
. Popoff, I. C.; Denver, J. L. J. Org. Chem. 1969, 34, 1128.
. Ley, S. V.; Simpkins, N. S. J. Chem. Soc., Chem. Com-
mun. 1983, 1281.
13
H), 2.44 (s, 3H, Me). C NMR (75 MHz; CDCl –CCl4
3
8
9
. Gancarz, R. A.; Kice, J. L. Tetrahedron Lett. 1980, 4155.
. (a) Asscher, M.; Vofsi, D. J. Chem. Soc. 1964, 4962; (b)
Asscher, M.; Vofsi, D. J. Chem. Soc., Perkin Trans. 1
v/v 3:1) 144.12, 141.72, 137.89, 132.43, 130.95, 129.85,
128.95, 128.44, 127.78, 127.67, 21.53. Elemental analysis;
calcd for C H O S: C, 69.74; H, 5.46; S, 12.41. Found:
15
14
2
+
1
972, 1543; (c) Hopkins, P. B.; Fuchs, P. L. J. Org.
C, 70.00; H, 5.60; S, 12.63. GC–MS (m/z): 258 [M ] (26),
Chem. 1978, 43, 1208.
194 (13), 193 (26), 178 (19).