N. Kojima et al. / Bioorg. Med. Chem. Lett. 18 (2008) 6451–6453
6453
(7, >98% ee12) due to instability of the
of 7 with iodine and PPh3 gave iodide (4) in 90% yield. Alkylation of
known
-lactone (5) with 4 in the presence of t-BuOK13 gave sul-
fide (8) in 74% yield. Oxidation of sulfide (8) into the sulfoxide, fol-
a
-fluoroaldehyde. Iodination
on Priority Area ‘Creation of Biologically Functional Molecules’
from The Ministry of Education, Culture, Sports, Science, and Tech-
nology, Japan.
c
lowed by thermal elimination, afforded fluorinated
segment (3).
c-lactone
References and notes
THF-ring segment (2) was prepared with our developed syn-
thetic method14 with high stereoselectivity. Assembly of fragments
2 and 3 was performed with the Sonogashira reaction.15 Selective
reduction of resulting enediyne 9 with diimide, followed by depro-
tection of TBS ether, gave C4-fluorinated solamin (1) (Scheme 3).
Epimer (12) at C4 position was synthesized from ent-7 prepared
1. For reviews on Annonaceous acetogenins Bermejo, A.; Figadère, B.; Zafra-Polo,
M.-C.; Barrachina, I.; Estornell, E.; Cortes, D. Nat . Prod . Rep. 2005, 22, 269.
2. (a) Morré, D. J.; de Cabo, R.; Farley, C.; Oberlies, N. H.; McLaughlin, J. L. Life Sci.
1995, 56, 343; (b) Wolvetang, E. J.; Johnson, K. L.; Krauer, K.; Ralph, S. J.;
Linnane, A. W. FEBS Lett. 1994, 339, 40.
3. For recent total synthesis of acetogenins (a) Konno, H.; Okuno, Y.; Makabe, H.;
Nosaka, K.; Onishi, A.; Abe, Y.; Sugimoto, A.; Akaji, K. Tetrahedron Lett. 2008, 49,
782; (b) Hattori, Y.; Kimura, Y.; Moroda, A.; Konno, H.; Abe, M.; Miyoshi, H.;
Goto, T.; Makabe, H. Chem. Asian J. 2006, 1, 894; (c) Bandur, N. G.; Brueckner, D.;
Hoffmann, R. W.; Koert, U. Org. Lett. 2006, 8, 3829; (d) Takahashi, S.; Hongo, Y.;
Ogawa, N.; Koshino, H.; Nakata, T. J. Org. Chem. 2006, 71, 6305; (e) Marshall, J.
A.; Sabatini, J. J. Org. Lett. 2006, 8, 3557; (f) Curran, D. P.; Zhang, Q.; Richard, C.;
Lu, H.; Gudipati, V.; Wilcox, C. S. J. Am. Chem. Soc. 2006, 128, 9561; (g) Hoye, T.
R.; Eklov, B. M.; Jeon, J.; Khoroosi, M. Org. Lett. 2006, 8, 3383; (h) Gudipati, V.;
Curran, D. P.; Wilcox, C. S. J. Org. Chem. 2006, 71, 3599; (i) Strand, D.; Norrby, P.-
O.; Rein, T. J. Org. Chem. 2006, 71, 1879; (j) Tominaga, H.; Maezaki, N.; Yanai,
M.; Kojima, N.; Urabe, D.; Ueki, R.; Tanaka, T. Eur. J. Org. Chem. 2006, 1422.
4. For recent synthesis of acetogenin analogues (a) Kojima, N.; Fushimi, T.;
Maezaki, N.; Tanaka, T.; Yamori, T. Bioorg. Med. Chem. Lett. 2008, 18, 1637; (b)
Liu, H.-X.; Huang, G.-R.; Zhang, H.-M.; Wu, J.-R.; Yao, Z.-J. Bioorg. Med. Chem.
Lett. 2007, 17, 3426; (c) Marshall, J. A.; Sabatini, J. J.; Valeriote, F. Bioorg. Med.
Chem. Lett. 2007, 17, 2434; (d) Duval, R. A.; Poupon, E.; Romero, V.; Peris, E.;
Lewin, G.; Cortes, D.; Brandt, U.; Hocquemiller, R. Tetrahedron 2006, 62, 6248;
(e) Derbre, S.; Duval, R.; Roue, G.; Garofano, A.; Poupon, E.; Brandt, U.; Susin, S.
A.; Hocquemiller, R. ChemMedChem 2006, 1, 118; (f) Duval, R. A.; Lewin, G.;
Peris, E.; Chahboune, N.; Garofano, A.; Droese, S.; Cortes, D.; Brandt, U.;
Hocquemiller, R. Biochemistry 2006, 45, 2721. and references cited therein.
5. Thomas, C. J. Curr. Top. Med. Chem. 2006, 6, 1529.
by
a
-fluoriation of 6 with (S)-MacMillan’s catalyst (Scheme 4).
Synthesized C4-fluorinated solamin (1) and C4-epi-fluorinated
solamin (12) were tested for in vitro antiproliferative activity
against a panel of 39 human cancer cell lines.16 Table 1 shows
the 50% growth inhibitory concentration relative to control
(GI50). The GI50 values of analogues 1 and 12 were lower than those
of solamin for a large number of cell lines, which means that the
two analogues have stronger growth inhibitory activity against
cancer cell lines than solamin. The human lung carcinoma cell line,
DMS114, was most sensitive to synthesized 1 and 12 (GI50: 0.26
and 0.46
lM, respectively), and to natural solamin (4.3
lM) and
murisolin (0.01
lM). We also noted some features in the finger-
prints of the two fluorinated analogues. For example, C4-fluori-
nated solamin (1) exhibited approximately 20 times higher
cytotoxicity to MKN7 than C4-epi-fluorinated solamin (12). Com-
pound (1) showed at least 50 times higher cytotoxicity to HCT-
116 than solamin. Together, the results suggest that the existence
and stereochemistry of fluorine atom at C4-position are recognized
by the cancer cell lines.
6. (a) Nakanishi, Y.; Chang, F.-R.; Liaw, C.-C.; Wu, Y.-C.; Bastow, K. F.; Lee, K.-H. J.
Med. Chem. 2003, 46, 3185; (b) Sinha, S. C.; Keinan, E. J. Am. Chem. Soc. 1993,
115, 4891; (c) Myint, S. H.; Cortes, D.; Laurens, A.; Hocquemiller, R.; Leboeuf,
M.; Cavé, A.; Cotte, J.; Quéro, A.-M. Phytochemistry 1991, 30, 3335.
Using COMPARE analysis,17 we compared the fingerprints of 1
and 12 with those of more than 60 conventional anticancer drugs
currently in use, and found that the fingerprints of 1 and 12 did not
show any significant correlation with those of conventional anti-
cancer drugs. This suggests that 1 and 12 have a unique mode of
action. In addition, COMPARE analysis indicated that 1, 12, and sol-
amin were very similar (1 vs solamin: r = 0.81; 12 vs solamin:
r = 0.69; 1 vs 12: r = 0.79). This may indicate that these three com-
pounds share the same mode of action.
7. Tsushima, T.; Kawada, K.; Tsuji, T.; Tawara, K. J. Med. Chem. 1985, 28, 253.
8. (a) Maezaki, N.; Tominaga, H.; Kojima, N.; Yanai, M.; Urabe, D.; Ueki, R.; Tanaka,
T.; Yamori, T. Chem. Eur. J. 2005, 11, 6237; (b) Maezaki, N.; Tominaga, H.;
Kojima, N.; Yanai, M.; Urabe, D.; Tanaka, T. Chem. Commun. 2004, 406.
9. White, J. D.; Somers, T. C.; Reddy, N. J. Org. Chem. 1992, 57, 4991.
10. Nishida, A.; Shirato, F.; Nakagawa, M. Tetrahedron: Asymmetry 2000, 11, 3789.
11. Beeson, T. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 8826.
12. Ee was determined from 1H NMR of the resulting MTPA esters of 7.
13. Haufe, G.; Laue, K. W.; Triller, M. U.; Takeuchi, Y.; Shibata, N. Tetrahedron 1998,
54, 5929.
14. (a) Maezaki, N.; Kojima, N.; Tanaka, T. Synlett 2006, 993; (b) Kojima, N.
Yakugaku Zasshi 2004, 124, 673; (c) Kojima, N.; Maezaki, N.; Tominaga, H.;
Yanai, M.; Urabe, D.; Tanaka, T. Chem. Eur. J. 2004, 10, 672; (d) Kojima, N.;
Maezaki, N.; Tominaga, H.; Asai, M.; Yanai, M.; Tanaka, T. Chem. Eur. J. 2003, 9,
4980; (e) Maezaki, N.; Kojima, N.; Tominaga, H.; Yanai, M.; Tanaka, T. Org. Lett.
2003, 5, 1411; (f) Maezaki, N.; Kojima, N.; Asai, M.; Tominaga, H.; Tanaka, T.
Org. Lett. 2002, 4, 2977.
15. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
16. Yamori, T.; Matsunaga, A.; Saito, S.; Yamazaki, K.; Komi, A.; Ishizu, K.; Mita, I.;
Edatsugi, H.; Matsuba, Y.; Takezawa, K.; Nakanishi, O.; Kohno, H.; Nakajima, Y.;
Komatsu, H.; Andoh, T.; Tsuruo, T. Cancer Res. 1999, 59, 4042.
17. (a) Yaguchi, S.; Fukui, Y.; Koshimizu, I.; Yoshimi, H.; Matsuno, T.; Gouda, H.;
Hirono, S.; Yamazaki, K.; Yamori, T. J. Natl. Cancer Inst. 2006, 98, 545; (b) Paull,
K. D.; Shoemaker, R. H.; Hodes, L.; Monks, A.; Scudiero, D. A.; Rubinstein, L.;
Plowman, J.; Boyd, M. R. J. Natl. Cancer Inst. 1989, 81, 1088.
Further synthesis of other fluorinated analogues of acetogenins
and investigation of their growth inhibitory activity are under way.
Acknowledgments
Biological activity was examined by the Screening Committee of
New Anticancer Agents supported by a Grant-in-Aid for Scientific
Research on Priority Area ‘Cancer’ from The Ministry of Education,
Culture, Sports, Science, and Technology, Japan. We acknowledge
financial support through a Grant-in-Aid for Scientific Research