7400
J. Am. Chem. Soc. 2000, 122, 7400-7401
dienes and thus to show the formal bis-carbene character of
alkynes RsCtCsR T RsC(:)sC(:)sR.
Catalytic Double Addition of Diazo Compounds to
Alkynes: Synthesis of Functional Conjugated Dienes
Now we report a novel, selective catalytic synthesis of new
substituted 1,4-bistrimethylsilylbuta-1,3-dienes, by the combina-
tion of two molecules of trimethylsilyldiazomethane and one of
alkyne, catalyzed by RuCl(cod)C5Me5 (eq 1). The stereoselective
formation of these functional conjugated dienes results from the
ruthenium-catalyzed selective creation of two carbon-carbon
double bonds via double dimerization of a 1,2 bis-carbene
precursor with another carbene source.
Jacques Le Paih, Sylvie De´rien, Ismail O¨ zdemir,† and
Pierre H. Dixneuf*
Organome´talliques et Catalyse: Chimie et
Electrochimie Mole´culaires, UMR 6509 CNRS-UniVersite´ de
Rennes, Campus de Beaulieu, F-35042 Rennes, France
ReceiVed March 6, 2000
A major challenge in organic synthesis deals with the discovery
of one-pot, several-step reactions selectively leading to the
formation of several carbon-carbon bonds under mild conditions.
Metal-catalyzed reactions of diazo compounds have shown an
important contribution in this area, and still offer a strong potential
in synthesis.1 Catalytic additions of diazo compounds to alkynes,
especially with Rh2(OAc)4 catalyst, afford either cyclopropene
intermediates2 or reactive vinylcarbenoid species promoting C-C
bond formations in cascade.3-5 On the other hand, ruthenium
precatalysts have recently shown efficiency in the activation of
diazoalkane derivatives for their dimerization,6 cyclopropanation,7
or ring-opening metathesis,8 but to our knowledge, no example
of ruthenium-catalyzed addition of diazo compounds to alkynes
has been reported yet. As ruthenium-carbene species are well
known to easily generate, on reaction with an alkyne, alkenyl-
carbene-ruthenium species,9 and as it was recently shown that
two cis carbene ligands can be accommodated on a Cp*(Cl)Ru
moiety (Cp* ) C5Me5),10,11 we have investigated the possibility
of coupling alkenylcarbene-ruthenium, in situ generated from
diazoalkane derivative and alkyne, with a second equivalent of
carbene species arising from diazoalkane in order to produce
The reaction of 1.25 mmol of phenylacetylene with 2.4 equiv
of trimethylsilyldiazomethane (2 M in hexane), in the presence
of 5 mol % of catalyst precursor RuCl(cod)C5Me512 (A) in 2 mL
of dioxane, affords the 1,4-bistrimethylsilylbutadiene 1 after 6 h
1
at 60 °C in 72% yield (eq 2). H NMR and NOE experiments
showed Z stereoselectivity for the trisubstituted double bond,
whereas the disubstituted double bond is formed with an E/Z
stereoselectivity in the ratio 70/30. The bulky, electron-rich
precursor A appears to be a selective catalyst for this reaction,
whereas RuCl3‚xH2O, (PPh3)3RuCl2, [(p-cymene)RuCl2]2, (p-
cymene)RuCl2(PCy3), and Cp*RuBr2(η3-C4H7) do not catalyze
it at all.
Consequently, the catalyst precursor A and the above reaction
conditions (dioxane, 60 °C) have been selected to study the
activation of a variety of alkynes.13 1-Ethynylcyclohexene affords
after 5 h the 1,4-bistrimethylsilylbutadiene derivative 2 in 80%
yield (E/Z ) 89/11) (eq 2). The reaction has also been extended
to various disubstituted alkynes, and the 1,4-bistrimethylsilyl-
butadienes 3 and 4 have been obtained in 56 and 30% yield,
respectively (eq 3). Only one isomer has been observed by NMR
* To whom correspondence should be addressed. Phone: +33 299286280.
† Permanent address: Ino¨nu U¨ niversitesi Fen-Edebiyat Faku¨ltesi, 44280
Malatya, Turkey.
(1) (a) Ye, T.; McKervey, M. A. Chem. ReV. 1994, 94, 1091. (b) Padwa,
A.; Austin, D. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1797. (c) Doyle, M.
P. Chem. ReV. 1986, 86, 919.
(2) (a) Petiniot, N.; Anciaux, A. J.; Noels, A. F.; Hubert, A. J.; Teyssie´, P.
Tetrahedron Lett. 1978, 14, 1239. (b) Dowd, P.; Garner, P.; Schappert, R.;
Irngartinger, H.; Goldman, A. J. Org. Chem. 1982, 47, 4240. (c) Conde-
Petiniot, N.; Hubert, A. J.; Noels, A. F.; Warin, R.; Teyssie´, P. Bull. Soc.
Chim. Belg. 1986, 95, 649.
(3) (a) Padwa, A.; Xu, S. L. J. Am. Chem. Soc. 1992, 114, 5881. (b) Mu¨ller,
P.; Pautex, N.; Doyle, M. P.; Bagheri, V. HelV. Chim. Acta 1990, 73, 1233.
(4) (a) Mueller, P. H.; Kassir, J. M.; Semones, M. A.; Weingarten, M. D.;
Padwa, A. Tetrahedron Lett. 1993, 34, 4285. (b) Padwa, A.; Krumpe, K. E.;
Kassir, J. M. J. Org. Chem. 1992, 57, 4940. (c) Padwa, A.; Austin, D. J.; Xu,
S. L. Tettrahedron Lett. 1991, 32, 4103. (d) Padwa, A.; Austin, D. J.; Xu, S.
L. J. Org. Chem. 1992, 57, 1330.
(5) (a) Hoye, T. R.; Dinsmore, C. J.; Johnson, D. S.; Korkowski, P. F. J.
Org. Chem. 1990, 55, 4518. (b) Hoye, T. R.; Dinsmore, C. J. Tetrahedron
Lett. 1991, 32, 3755. (c) Hoye, T. R.; Dinsmore, C. J. J. Am. Chem. Soc.
1991, 113, 4343.
(6) (a) Collman, J. P.; Rose, E.; Venburg, G. D. J. Chem. Soc., Chem.
Commun. 1993, 934. (b) Baratta, W.; Del Zotto, A.; Rigo, P. J. Chem. Soc.,
Chem. Commun. 1997, 2163.
(7) (a) Simal, F.; Demonceau, A.; Noels, A. F.; Knowles, D. R. T.; O’Leary,
S.; Maitlis, P. M.; Gusev, O. J. Organomet. Chem. 1998, 558, 163. (b) Doyle,
M. P.; Peterson, C. S.; Zhou, Q.; Nishiyama, H. J. Chem. Soc., Chem. Commun.
1997, 211. (c) Nishiyama, H.; Itoh, Y.; Matsumoto, H.; Park, S.; Itoh, K. J.
Am. Chem. Soc. 1994, 116, 2223.
(8) (a) Stumpf, A. W.; Saive, E.; Demonceau, A.; Noels, A. F. J. Chem.
Soc., Chem. Commun. 1995, 1127. (b) Demonceau, A.; Stumpf, A. W.; Saive,
E.; Noels, A. F. Macromolecules 1997, 30, 3128.
(9) (a) Kinoshita, A.; Mori, M. J. Org. Chem. 1996, 61, 8356. (b) Stragies,
R.; Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 2518.
(c) Picquet, M.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun.
1998, 2249. (d) Zuercher, W. J.; Scholl, M.; Grubbs, R. H. J. Org. Chem.
1998, 63, 4291.
(10) Le Paih, J.; De´rien, S.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun.
1999, 1437.
(11) Gemel, C.; La Pense´e, A.; Mauthner, K.; Mereiter, K.; Schmid, R.;
Kirshner, K. Monatsh. Chem. 1997, 128, 1189.
for these tetrasubstituted dienes. NOE experiments and selective
13C NMR decoupling show that this isomer has both substituents
in the cis position on each double bond. Hex-3-yne affords the
(E,E)-1,4-bistrimethylsilylbutadiene 5 (R ) R′ ) Et) in 72% yield.
(12) Fagan, P. J.; Mahoney, W. S.; Calabrese, J. C.; Williams, I. D.
Organometallics 1990, 9, 1843-1852.
(13) The alkyne (2.5 mmol) and trimethylsilyldiazomethane (2.4 equiv)
are stirred in dioxane (2-4 mL) in the presence of catalyst A (0.125 mmol)
at 60 °C for 5-6 h. The solvent is evaporated under vacuum, and the products
are isolated by column chromatography over silica gel. The isolated yields
are based on the alkyne. All compounds were fully characterized by
spectroscopic methods. Selected data for 1: isomer Z,E, 1H NMR (200 MHz,
CDCl3) δ -0.16 (9H, s), 0.09 (9H, s), 5.44 (1H, d, J ) 18 Hz), 5.88 (1H, d,
J ) 1 Hz), 6.75 (1H, dd, J ) 18 Hz, J ) 1 Hz), 7.10-7.13 (2H, m), 7.28-
7.35 (3H, m); isomer Z,Z, 1H NMR (200 MHz, CDCl3) δ -0.09 (9H, s), 0.13
(9H, s), 5.59 (1H, d, J ) 14 Hz), 5.88 (1H, d, J ) 1 Hz), 6.87 (1H, dd, J )
14 Hz, J ) 1 Hz), 7.19-7.24 (2H, m), 7.28-7.35 (3H, m). Selected data for
3: 1H NMR (200 MHz, CDCl3) δ -0.2 (9H, s), 0.05 (9H, s), 2.04 (3H, s),
5.24 (1H, s), 5.93 (1H, s), 7.02-7.14 (2H, m), 7.26-7.38 (3H, m).
10.1021/ja000790c CCC: $19.00 © 2000 American Chemical Society
Published on Web 07/18/2000