Synthesis, characterization, and application of an efficient heterogeneous catalyst
539
ACKNOWLEDGEMENT
The authors gratefully acknowledge financial support from the Mahshahr Branch, Islamic Azad
University, Iran.
REFERENCES
1. Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev.
2007, 107, 2563–2591.
2. Yuan, C.; Huang, Z.; Chen, J. Basic ionic liquid supported on mesoporous SBA-15: An
efficient heterogeneous catalyst for epoxidation of olefins with H2O2 as oxidant. Catal.
Commun. 2012, 24, 56–60.
3. Godajdar, B.M.; Kiasat, A.R.; Hashemi, M.M. Synthesis, characterization and application of
magnetic room temperature dicationic ionic liquid as an efficient catalyst for the preparation
of 1,2-azidoalcohols. J. Mol. Liq. 2013, 183, 14–19.
4. Godajdar, B.M.; Kiasat, A.R. [PBMIM](FeCl4)2: An effective catalyst for the one-pot
synthesis of 1,3-dihydropyrimidin-2-ones and thiones under solvent free conditions. J. Chil.
Chem. Soc. 2013, 58, 1850–1852.
5. Kiasat, A.R.; Nazari, S.; Davarpanah, J. β-Cyclodextrin-polyurethane polymer: A neutral
and eco-friendly heterogeneous catalyst for the one-pot synthesis of 1,4-dihydropyridine and
polyhydroquinolien derivatives via Hantzsch reaction under solvent-free conditions. J.
Serbian Chem. Soc. 2014, 79, 401–409.
6. Kiasat, A.R. Sayyahi, S. A simple and rapid protocol for the synthesis of phenacyl
derivatives using macroporous polymer-supported reagents. Mol. Divers. 2010, 14, 155-158.
7. Gao, Y.; Yang, W.; Du, D.-M. Efficient organocatalytic asymmetric synthesis of 2-amino-
4H-chromene-3-carbonitrile derivatives. Tetrahedron: Asymmetry 2012, 23, 339–344.
8. Da Silva, J.F.M.; Garden, S.J.; Pinto, A.C. The chemistry of isatins: A review from 1975 to
1999. J. Braz. Chem. Soc. 2001, 12, 273–324.
9. Yimdjo, M.C.; Azebaze, A.G.; Nkengfack, A.E.; Meyer, A.M.; Bodo, B.; Fomum, Z.T.
Antimicrobial and cytotoxic agents from Calophyllum inophyllum. Phytochemistry 2004, 65,
2789–2795.
10. Kornet, M.J.; Thio, A.P. Oxindole-3-spiropyrrolidines and -piperidines. Synthesis and local
anesthetic activity. J. Med. Chem. 1976, 19, 892–898.
11. Alvey, L.; Prado, S.; Huteau, V.; Saint-Joanis, B.; Michel, S.; Koch, M.; Cole, S.T.;
Tillequin, F.; Janin, Y.L. A new synthetic access to furo[3,2-f]chromene analogues of an
antimycobacterial. Bioorg. Med. Chem. 2008, 16, 8264–8272.
12. Okita, T.; Isobe, M. Synthesis of the pentacyclic intermediate for dynemicin a and unusual
formation of spiro-oxindole ring. Tetrahedron 1994, 50, 11143–11152.
13. Wang, X.-S.; Shi, D.-Q.; Tu, S.-J.; Yao, C.-S. A convenient synthesis of 5-oxo-5,6,7,8-
tetrahydro-4H-benzo-[b]-pyran derivatives catalyzed by KF-alumina. Synth. Commun. 2003,
33, 119–126.
14. Peng, Y.; Song, G. Amino-functionalized ionic liquid as catalytically active solvent for
microwave-assisted synthesis of 4H-pyrans. Catal. Commun. 2007, 8, 111–114.
15. Gao, S.; Tsai, C.H.; Tseng, C.; Yao, C.F. Fluoride ion catalyzed multicomponent reactions
for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media.
Tetrahedron 2008, 64, 9143–9149.
16. Kumar, D.; Reddy, V.B.; Sharad, S.; Dube, U.; Kapur, S. A facile one-pot green synthesis
and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-
chromenes. Eur. J. Med. Chem. 2009, 44, 3805–3809.
17. Shaterian, H.R.; Arman, M.; Rigi, F. Domino Knoevenagel condensation, Michael addition,
and cyclization using ionic liquid, 2-hydroxyethylammonium formate, as a recoverable
catalyst. J. Mol. Liq. 2011, 158, 145–150.
Bull. Chem. Soc. Ethiop. 2018, 32(3)