Acetylene-Dicobaltcarbonyl Complexes
J. Am. Chem. Soc., Vol. 122, No. 33, 2000 7945
With regard to reactivity, phosphine-substituted acetylene-
Scheme 1
dicobaltcarbonyl complexes have been studied in connection
4
5,6
to both the Nicholas and the Pauson-Khand reactions, mainly
with the aim of developing enantioselective versions of these
processes. Up to now, however, complexes of this type have
not found extensive use in synthesis, due to several reasons:
(a) In several instances, because of the stereoheterotopic
nature of the two cobalt atoms, phosphine substitution on
acetylene-dicobalthexacarbonyl complexes leads to the forma-
tion of diastereomer pairs, which are often hardly separable.
This happens for example in complexes of the type shown in
1
2
Figure 1a (with R different from R ), either when the phosphine
ligand or the alkyne moiety is chiral. Even when obtained
stereoisomerically pure, the absolute configuration of such
substituted complexes is difficult to ascertain by methods other
than X-ray diffraction. Thus, lack of crystallinity has prevented
the complete characterization of the (R)-Glyphos-derived com-
We have recently found9 that the reaction of (R)-2-(2-
diphenylphosphinophenyl)-4-phenyloxazoline 1 with the phen-
ylacetylene-dicobalthexacarbonyl complex (2) gives rise to a
5:15 mixture of two diastereomer complexes. The structure
of the major one (3), elucidated by X-ray diffraction analysis,
revealed an unprecedented P,N-chelation of the ligand with one
cobalt atom (Scheme 1).
8
6
a,d
plexes used in enantioselective Pauson-Khand reactions.
b) Thermally induced phosphine dissociation processes,
(
leading to the interconversion between stereoisomeric complexes
and to the loss of the stereochemical integrity of the tetrahedral
C2Co2 moiety, take place at relatively low temperatures. This
phenomenon strongly limits the use of enantiopure chiral
phosphine-substituted alkyne complexes in asymmetric Pauson-
Khand and Nicholas reactions.
Contrary to nonchelated, phosphine-substituted alkyne-
dicobaltcarbonyl complexes, 3 was very stable toward isomer-
ization, but showed only moderate enantioselectivities [up to
5
1% enantiomeric excess (ee)] in the intermolecular Pauson-
Khand reaction with norbornadiene. On the basis of these
findings, we decided to further investigate the use of 4-substituted-
(
c) The electrophilicity of dicobaltcarbonyl-stabilized pro-
2
-(2-diphenylphosphinophenyl)oxazolines as chiral ligands for
pargyl cations, which are the reactive intermediates in the
Nicholas reaction, is greatly diminished upon substitution of a
alkyne-dicobaltcarbonyl complexes. We disclose here in full
detail the results of this study, which has led to the development
of both a highly enantioselective, practical version of the
intermolecular Pauson-Khand reaction and a facile method for
the determination of the absolute configuration of chiral,
phosphine-substituted acetylene-dicobaltcarbonyl complexes.
7
carbon monoxide by a triaryl- or trialkylphosphine. In a similar
way, the Pauson-Khand reactivity of phosphine- or phosphite-
substituted complexes is lower than that of the parent unsub-
stituted compounds.6
f,8
(
3) (a) Gelling, A.; Jeffery, J. C.; Povey, D. C.; Went, M. J. J. Chem.
Results and Discussion
Soc., Chem. Commun. 1991, 349-351. (b) Gelling, A.; Went, M. J.; Povey,
D. C. J. Organomet. Chem. 1993, 455, 203-210. (c) Mirza, H. A.; Vittal,
J. J.; Puddephatt, R. J.; Frampton, C. S.; Manojlovic-Muir, L.; Xia, W.;
Hill, R. H. Organometallics 1993, 12, 2767-2776. (d) Yang, K.; Bott, S.
G.; Richmond, M. G. Organometallics 1995, 14, 4977-4979. (e) Yang,
K.; Bott, S. G.; Richmond, M. G. J. Organomet. Chem. 1996, 516, 65-80.
Synthetic and Structural Studies on Alkyne-Dicobalt-
phosphinooxazoline)carbonyl Complexes. First, we studied
(
the reaction of the methionine-derived phosphinooxazoline 4
prepared from (S)-methioninol according to the procedure
[
(
f) Edwards, A. J.; Mach, S. R.; Mays, M. J.; Mo, C.-Y.; Raithby, P. R.;
10
reported by Helmchen and co-workers ] with the phenylacety-
lene-dicobalthexacarbonyl complex 2. The oxazoline residue
was chosen to ascertain the effect of the replacement of the
phenyl group in 1 by a less bulky alkyl chain, as well as to
investigate the possibility of additional chelation by the sulfide
Rennie, M.-A. J. Organomet. Chem. 1996, 519, 243-251. (g) Gimbert,
Y.; Robert, F.; Durif, A.; Averbuch, M.-T.; Kann, N.; Greene, A. E. J.
Org. Chem. 1999, 64, 3492-3497.
(
4) (a) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207-214. (b) Bradley,
D. H.; Khan, M. A.; Nicholas, K. M. Organometallics 1989, 8, 554-556.
c) D’Agostino, M. F.; Frampton, C. S.; McGlinchey, M. J. Organometallics
(
1
1
1
1
1
990, 9, 2972-2984. (d) Dunn, J. A.; Pauson, P. L. J. Organomet. Chem.
991, 419, 383-389. (e) Bradley, D. H.; Nicholas, K. M. Organometallics
992, 11, 2598-2607. (f) Caffyn, A. J. M.; Nicholas, K. M. J. Am. Chem.
moiety. The treatment of 2 with 1 equiv of 4 in hot toluene
led to the isolation of a new complex 5 in 78% yield after
chromatographic purification (Scheme 2).
Soc. 1993, 115, 6438-6439.
(
5) Reviews on the Pauson-Khand reaction: (a) Pauson, P. L.; Khand,
I. U. Ann. N. Y. Acad. Sci. 1977, 295, 2-14. (b) Pauson, P. L. Tetrahedron
985, 41, 5855-5860. (c) Schore, N. E. Org. React. 1991, 40, 1-90. (d)
This complex appears to be a single diastereomer, according
to physical data (melting point), chromatographic behavior
1
Schore, N. E. In ComprehensiVe Organic Synthesis; Trost, B. M., Ed.;
Pergamon Press: Oxford, 1991; Vol. 5, pp 1037-1064. (e) Geis, O.;
Schmalz, H. G. Angew. Chem., Int. Ed. Engl. 1998, 37, 911-914. (f)
Buchwald, S. L.; Hicks, F. A. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999;
Vol. II, pp 491-510.
(8) Billington, D. C.; Helps, I. M.; Pauson, P. L.; Thomson, W.; Willison,
D. J. Organomet. Chem. 1988, 354, 233-242.
(9) Castro, J.; Moyano, A.; Peric a` s, M. A.; Riera, A.; Alvarez-Larena,
A.; Piniella, J. F. J. Organomet. Chem. 1999, 585, 53-58.
(10) Peer, M.; Jong, J. C.; Kiefer, M.; Langer, T.; Rieck, H.; Schell, H.;
Sennhenn, P.; Sprinz, J.; Steinhagen, H.; Wiese, B.; Helmchen, G.
Tetrahedron 1996, 52, 7547-7583.
(6) (a) Bladon, P.; Pauson, P. L.; Brunner, H.; Eder, J. J. Organomet.
Chem. 1988, 353, 449-454. (b) Brunner, H.; Niederhuber, A. Tetrahe-
dron: Asymmetry 1990, 1, 711-714. (c) Park, H.-J.; Lee, B. Y.; Kang, Y.
K.; Chung, Y. K. Organometallics 1995, 14, 3104-3107. (d) Hay, A. M.;
Kerr, W. J.; Kirk, G. G.; Middlemiss, D. Organometallics 1995, 14, 4986-
(11) (a) Krafft, M. E. J. Am. Chem. Soc. 1988, 110, 968-970. (b) Krafft,
M. E.; Juliano, C. A.; Scott, I. L.; Wright, C.; McEachin, M. D. J. Am.
Chem. Soc. 1991, 113, 1693-1703. (c) Krafft, M. E.; Juliano, C. A. J.
Org. Chem. 1992, 57, 5106-5115. (d) Krafft, M. E.; Scott, I. L.; Romero,
R. H.; Feibelmann, S.; Van Pelt, C. E. J. Am. Chem. Soc. 1993, 115, 7199-
7207. (e) Verdaguer, X.; Moyano, A.; Peric a` s, M. A.; Riera, A.; Bernardes,
V.; Greene, A. E.; Alvarez-Larena, A.; Piniella, J. F. J. Am. Chem. Soc.
1994, 116, 2153-2154. (f) Tormo, J.; Verdaguer, X.; Moyano, A.; Peric a` s,
M. A.; Riera, A. Tetrahedron 1996, 52, 14021-14040. (g) Verdaguer, X.;
V a´ zquez, J.; Fuster, G.; Bernardes-G e´ nisson, V.; Greene, A. E.; Moyano,
A.; Peric a` s, M. A.; Riera, A. J. Org. Chem. 1998, 63, 7037-7052. (h)
Montenegro, E.; Poch, M.; Moyano, A.; Peric a` s, M. A.; Riera, A.
Tetrahedron Lett. 1998, 39, 335-338.
4
988. (e) Kerr, W. J.; Kirk, G. G.; Middlemiss, D. J. Organomet. Chem.
996, 519, 93-101. (f) Derdau, V.; Laschat, S.; Dix, I.; Jones, P. G.
1
Organometallics 1999, 18, 3859-3864. For the use of chiral bidentate
phosphines in catalytic asymmetric intramolecular Pauson-Khand reactions,
see: (g) Hiroi, K.; Watanabe, T.; Kawagishi, R.; Abe, I. Tetrahedron Lett.
2
000, 41, 891-895. (h) Hiroi, K.; Watanabe, T.; Kawagishi, R.; Abe, I.
Tetrahedron: Asymmetry 2000, 11, 797-808.
7) Kuhn, O.; Rau, D.; Mayr, H. J. Am. Chem. Soc. 1998, 120, 900-
07.
(
9