4
Biancotti, A.; Gamba, A.; Murmann, W. J. Med. Chem. 1965, 8,
305-312.
obviously, together with the formation of the compound 4 and 5
detected by HRMS. These observations suggest that the reaction
probably proceeds through a radical pathway.
3.
4.
(a) Du, B.; Shan, A.; Zhong, X.; Zhang, Y.; Chen, D.; Cai, K. Am.
J. Med. Sci. 2014, 347, 178-182. (b) Boggs, S.; Elitzin, V. I.;
Gudmundsson, K.; Martin, M. T.; Sharp, M. J. Org. Process Res.
Dev. 2009, 13, 781-785.
Scheme 2. Control Experiments.
(a) Mondal, S.; Samanta, S.; Jana, S.; Hajra, A. J. Org. Chem. 2017,
82, 4504-4510. (b) Gao, Y.; Chen, S.; Lu, W.; Gu, W.; Liu, P.; Sun,
P. Org. Biomol. Chem. 2017, 15, 8102-8109. (c) Sun, K.; Mu, S.;
Liu, Z.; Feng, R.; Li, Y.; Pang, K.; Zhang, B. Org. Biomol. Chem.
2018, 16, 6655-6658. (d) Yu, Y.; Yuan, Y.; Liu, H.; He, M.; Yang,
M.; Liu, P.; Yu, B.; Dong, X.; Lei, A. Chem. Commun. 2019, 55,
1809-1812. (e) Singsardar, M.; Mondal, S.; Sarkar, R.; Hajra, A.
ACS Omega 2018, 3, 12505-12512. (f) Lu, S.; Tian, L.; Cui, T.;
Zhu, Y.; Zhu, X.; Hao, X.; Song, M.; J. Org. Chem. 2018, 83,
13991-14000. (g) Samanta, S.; Ravi, C.; Rao, S.; Joshi, A.;
Adimurthy, S. Org. Biomol. Chem. 2017, 15, 9590-9594. (h) Chen,
H.; Yi, H.; Tang, Z.; Bian, C.; Zhang, H.; Lei, A. Adv. Synth. Catal.
2018, 360, 3220-3227. (i) Samanta, S.; Mondal, S.; Ghosh, D.;
Hajra, A. Org. Lett. 2019, 21, 4905-4909. (j) Wang, Y.; Frett, B.;
McConnell, N.; Li, H. Org. Biomol. Chem. 2015, 13, 2958-296. (k)
DiMauro, E. F.; Kennedy, J. M. J. Org. Chem. 2007, 72, 1013-1016.
(a) Bizet, V.; Kowalczyk, R.; Bolm, C. Chem. Soc. Rev. 2014, 43,
2426-2438. (b) Rémy, P.; Langner, M.; Bolm, C. Org. Lett. 2006,
8, 1209-1211. (c) Langner, M.; Bolm, C. Angew. Chem. Int. Ed.
2004, 43, 5984-5987. (d) Sedelmeier, J.; Hammerer, T.; Bolm, C.
Org. Lett. 2008, 10, 917-920. (e) Frings, M.; Thomé, I.; Bolm, C.
Beilstein J. Org. Chem. 2012, 8, 1443-1451. (f) Yadav, M. R.; Rit,
R. K.; Sahoo, A. K. Chem. Eur. J. 2012, 18, 5541-5545.
(a) Lücking, U. Angew. Chem. Int. Ed. 2013, 52, 9399-9408. (b)
Frings, M.; Bolm, C.; Blum, A. Gnamm, C. Eur. J. Med. Chem.
2017, 126, 225-245. (c) Sirvent, J. A.; Lücking, U. ChemMedChem
2017, 12, 487-501. (d) Lücking, U. Org. Chem. Front. 2019, 6,
1319-1324.
(a) Griffith, O. W.; Meister, A. J. Biol. Chem. 1979, 254, 7558-
7560. (b) Griffith, O. W.; Anderson, M. E.; Meister, A. J. Biol.
Chem. 1979, 254, 1205-1210. (c) Walker, D. P.; Zawistoski, M. P.;
McGlynn, M. A.; Li, J.; Kung, D. W.; Bonnette, P. C.; Baumann,
A.; Buckbinder, L.; Houser, J. A.; Boer, J.; Mistry, A.; Han, S.;
Guzman-Perez, L. X. Bioorg. Med. Chem. Lett. 2009, 19, 3253-
3258. (d) Park, S. J.; Buschmann, H.; Bolm, C. Bioorg. Med.Chem.
Lett. 2011, 21, 4888-4890. (e) Park, S. J.; Baars, H.; Mersmann, S.;
Buschmann, H.; Baron, J. M.; Amann, P. M.; Czaja, K.; Hollert, H.;
Bluhm, K.; Redelstein, R.; Bolm, C. ChemMedChem 2013, 8, 217-
220.
N
Ph
N
O
N
TEMPO
(2.0 equiv)
+
N
S
Ph
Ph
S
NH
N
Ph
standard conditions
Ph
Ph
O
3aa
, trace
1a
2a
OH
Ph
N
HO
Ph
N
O
N
BHT
(2.0 equiv)
+
N
S
O
Ph
Ph
S
NH
N
Ph
standard conditions
Ph
Ph
N
S
N
Ph
O
1a
2a
3aa
, 51%
N
Ph
5
4
detected by HR-MS
Based on the above results as well as previous reports,4a,4e,12a,13
a possible mechanism for this direct C-H sulfoximination of
imidazopyridines is proposed in Scheme 3. At first, NH-
sulfoximine (2a) produces N-iodoamino species A in the presence
of PhI(OAc)2, which subsequently generates the corresponding N-
5.
centered radical species
B
and acetoxy radical. The
imidazopyridine radical cation (C) is obtained from 2-
phenylimidazo[1,2-a]pyridine (1a) through a single electron
transfer process in the presence of acetoxy radical. Then, the N-
centered radical B coupled with the imidazopyridine radical cation
(C) regioselectively to produce the intermediate D. The
intermediate D consequently affords the product (3aa) through
further deprotonation by the acetate anion, together with the
elimination of AcOH.
6.
7.
Scheme 3. Plausible Mechanism.
Ph
PhI
I
O
O
O
AcO
OAc
OAc
Ph
N
Ph
S
N
I
Ph
S
NH
Ph
S
N
N
AcO
Ph
Ph
Ph
Ph
Ph
2a
Ph
N
S
D
N
AcOH
H
A
B
AcO
N
N
Ph
S
O
N
Ph
N
AcOH
Ph
O
Ph
Ph
N
N
3aa
8.
9.
(a) Lücking, U..; Siemeister, G.; Jautelat, R WO Patent WO
2006/099974, A1 2006. (b) Shetty, S. J.; Patel, G. D.; Lohray, B.
B.; Lohray, V. B.; Chakrabarti, G.; Chatterjee, A.; Jain, M. R.;
Patel, P. R. WO Patent WO 2007/077574, A2 2006.
AcO
C
1a
Conclusion
(a) Miyasaka, M.; Hirano, K.; Satoh, T.; Kowalczyk, R.; Bolm, C.;
Miura, M. Org. Lett. 2011, 13, 359-361. (b) Sumunnee, L.;
Pimpasri, C.; Noikham, M.; Yotphan, S. Org. Biomol. Chem. 2018,
16, 2697-2704. (c) Aithagani, S.; Kumar, M.; Yadav, M.;
Vishwakarma, R. A.; Singh, P. J. Org. Chem. 2016, 81, 5886-5894.
(d) Yu, H.; Dannenberg, C.; Li, Z.; Bolm, C. Chem. Asian J. 2016,
11, 54-57. (e) Yang, Q.; Choy, P.; Zhao, Q.; Leung, M.; Chan, H.;
So, C.; Wong, W.; Kwong, F. J. Org. Chem. 2018, 83, 11369-
11376. (f) Wimmer, A.; König, B.; Org. Lett. 2019, 21, 2740-2744.
(g) Jiang, Y.; You, Y.; Dong, W.; Peng, Z.; Zhang, Y.; An. D. J.
Org. Chem. 2017, 82, 5810-5818. (h) Aithagani, S.; Dara, S.;
Munagala, G.; Aruri, H.; Yadav, M.; Sharma, S.; Vishwakarma, R.
A.; Singh, P. Org. Lett. 2015, 17, 5547-5549. (i) Kim, J.; Ok, J.;
Kim, S.; Choi, W.; Lee, P. Org. Lett. 2014, 16, 4602-4605. (j)
Wang, L.; Priebbenow, D. L.; Dong, W.; Bolm, C. Org. Lett. 2014,
16, 2661-2663. (k) Moessner, C.; Bolm, C. Org. Lett. 2005, 7, 2667-
2669.
In summary, an efficient method for PhI(OAc)2-mediated
regioselective sulfoximination of imidazopyridines via C(sp2)-H
bond functionalization has been developed. The reaction
proceeded smoothly with a wide range of substrates and provided
the coupling products in moderate to good yield. Other
imidazoheterocycles, such as 2-phenylbenzo[d]imidazo[2,1-
b]thiazole and 2-(p-tolyl) imidazo[1,2-a]pyrimidine were also
compatible to this system. Broad substrate scopes, operational
simplicity and mild conditions are the prominent advantages of
this methodology. We believe this strategy possesses great
potential in organic chemistry and pharmaceutical research.
References and notes
10. (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299-5358.
(b) Manna, S.; Matcha, K.; Antonchick, A. P. Angew. Chem. Int.
Ed. 2014, 53, 8163-8166. (c) Sun, C.; Shi, Z. Chem. Rev. 2014, 114,
9219-9280. (d) Kalbandhe, A. H.; Kavale, A. C.; Karade, N. N. Eur.
J. Org. Chem. 2017, 2017, 1318-1322.
11. (a) Kim, H. J.; Kim, J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc.
2011, 133, 16382-16385. (b) Kantak, A. A.; Potavathri, S.; Barham,
R. A.; Romano, K. M.; DeBoef, B. J. Am. Chem. Soc. 2011, 133,
19960-19965. (c) Manna, S.; Serebrennikova, P. O.; Utepova, I. A.;
Antonchick, A. P.; Chupakhin, O. N. Org. Lett. 2015, 17, 4588-
4591.
1.
2.
(a) Enguehard-Gueiffier, C.; Gueiffier, A. Mini-Rev. Med. Chem.
2007, 7, 888-899. (b) Liu, J.; Chen, Q. Progress in Chemistry, 2010,
22, 631-638.
(a) Lhassani, M.; Chavignon, O.; Chezal, J. M.; Teulade, J. C.;
Chapat, J. P.; Snoeck, R.; Andrei, G.; Balzarini, J.; Clercq, E.;
Gueiffier, A. Eur. J. Med. Chem. 1999, 34, 271-274. (b) Gueiffier,
A.; Lhassani, M.; Elhakmaoui, A.; Snoeck, R.; Andrei, G.;
Chavignon, O.; Teulade, J. C.; Kerbal, A.; Essassi, E. M.; Debouzy,
J. C.; Witvrouw, M.; Blache, Y.; Balzarini, J.; Clercq,E.; Chapat, J.
P. J. Med. Chem. 1996, 39, 2856-2859. (c) Rival, Y.; Grassy, G.;
Taudou, A.; Ecalle, R. Eur. J. Med. Chem. 1991, 26, 13-18. (d)
Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali, E.; Rugarli, P.;
12. (a) Han, S.; Gao, X.; Wu, Q.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Adv.
Synth. Catal. 2019, 361, 1559-1563. (b) Mu, B.; Li, J.; Zou, D.; Wu,