043108-3
Ni, Li, and Gao
Appl. Phys. Lett. 88, 043108 ͑2006͒
1P. M. Ajayan, Chem. Rev. ͑Washington, D.C.͒ 99, 1787 ͑1999͒.
2Y-T Cheng, A. M. Weiner, C. A. Wong, M. P. Balogh, and M. J. Lukitsch,
Appl. Phys. Lett. 81, 3248 ͑2002͒.
3S. B. Sinnott and A. Andrews, Crit. Rev. Solid State Mater. Sci. 26, 145
͑2001͒.
4S. Iijima, Nature ͑London͒ 354, 56 ͑1991͒.
5U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, Science
248, 454 ͑1990͒.
6M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Rouff,
Science 287, 637 ͑2000͒.
7W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A.
Zhao, and G. Wang, Science 274, 1701 ͑1996͒.
8A. A. Puretzky, D. B. Geohegan, X. Fan, and S. J. Pennycook, Appl. Phys.
Lett. 76, 182 ͑2000͒.
9C. R. Martin, Science 266, 1961 ͑1994͒.
FIG. 4. ͑Color online͒ Bending elastic modulus of the amorphous SiO2
10H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, and P. M. Ajayan,
Science 296, 884 ͑2002͒.
nanowire vs nanowire diameters.
11C. J. Otten, O. R. Lourie, M. F. Yu, J. M. Cowley, M. J. Dyer, R. S. Rouff,
and W. E. Buhro, J. Am. Chem. Soc. 124, 4564 ͑2002͒.
12S. H. Yun, A. Dibos, J. Z. Wu, and D. K. Kim, Appl. Phys. Lett. 84, 2892
͑2004͒.
plied force and nanowire deflection keeps a very good linear
relationship up to 1 N, and then shows a slightly nonlinear
relationship until final catastrophic failure occurs. This phe-
nomenon was also observed by Paulo et al.34 on a double-
clamped silicon nanobeam. In addition to the bending deflec-
tion, the stretching of the nanowire also contributes to the
overall nanowire deflection under sufficiently large bending
force, and this may change the initial linear relationship be-
tween the applied force and the nanowire deflection. The
brittle fracture feature can be further verified from the 3D
AFM image in Fig. 3͑f͒ ͓the suspended nanowire before
bending is shown in Fig. 3͑e͔͒; as it shows almost no plastic
deformation. The slope of the initial linear potion of the
curve in Fig. 3͑d͒ was calculated and treated as the spring
constant of the nanowire. Based on the assumption that the
nanowire follows the linear elastic theory of an isotropic ma-
terial, the elastic modulus of the SiO2 nanowire, En, can be
calculated from35,37
13J. Niu, J. Sha, X. Y. Ma, J. Xu, and D. Yang, Chem. Phys. Lett. 367, 528
͑2003͒.
14W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan,
C. S. Lee, and S. T. Lee, Adv. Mater. ͑Weinheim, Ger.͒ 12, 1343 ͑2000͒.
15Y. Yao, F. H. Li, and S. T. Lee, Chem. Phys. Lett. 406, 381 ͑2005͒.
16J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science 287,
1471 ͑2000͒.
17B. Zheng, Y. Wu, P. Yang, and J. Liu, Adv. Mater. ͑Weinheim, Ger.͒ 14,
122 ͑2002͒.
18J. Q. Hu, Y. Jiang, X. M. Meng, C. S. Lee, and S. T. Lee, Chem. Phys.
Lett. 367, 339 ͑2003͒.
19Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare,
H. W. Kroto, and D. R. M. Walton, J. Mater. Chem. 8, 1859 ͑1998͒.
20G. S. Cheng, L. D. Zhang, X. G. Zhu, S. H. Chen, Y. Li, Y. Zhu, and G. T.
Fei, Nanostruct. Mater. 11, 421 ͑1999͒.
21G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo, and Y. Q.
Mao, Appl. Phys. Lett. 75, 2455 ͑1999͒.
22G. Fasol, Science 272, 1751 ͑1996͒.
23Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang,
W. Liu, Y. B. Li, X. P. Zou, and G. Wang, J. Mater. Res. 16, 683 ͑2001͒.
24X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, and J. J.
Du, Chem. Phys. Lett. 336, 53 ͑2001͒.
En = FL3/192dnI = knL3/192I,
͑1͒
where I is the moment of inertia. For a round-shaped nano-
wire, I=r4/4, where r is the radius of the nanowire, L is the
suspended length of the nanowire, and F is the applied load
at its midpoint position. kn͑=F/dn͒ is the spring constant of
the nanowire.
25J. Niu, J. Sha, N. Zhang, Y. Ji, X. Ma, and D. Yang, Physica E ͑Amster-
dam͒ 23, 1 ͑2004͒.
26D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H.
Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076
͑1998͒.
27M. Zhang, Y. Bando, L. Wada, and K. Kurashima, J. Mater. Sci. Lett. 18,
1911 ͑1999͒.
For all tested nanowires with a diameter ranging from 50
nm to 100 nm, the calculated elastic modulus ranged from 57
to 93 GPa and the average elastic modulus is 76.6 7.2 GPa,
which is close to the reported value of 73 GPa of thermally
grown SiO2 thin films38 and the bulk SiO2,39 but lower than
that of plasma-enhanced CVD ͑PECVD͒ SiO2 thin films.40
For example, the highest reported elastic modulus of 144
GPa is from 1 m SiO2 thin film deposited by PECVD.40
This discrepancy is probably due to the different synthesis
processes and different testing techniques. Normally, the
quality and density of PECVD SiO2 differ from thermally
grown SiO2.41,42 For SiO2 thin films, the elastic modulus was
found to be dependent upon thin-film synthesis processes.
PECVD SiO2 thin films usually exhibit a higher elastic
modulus than thermally grown ones.40 It can be seen from
Fig. 4 that the elastic modulus of the amorphous SiO2 nano-
wires is independent of the wire diameter in the range of
50–100 nm.
28C. H. Liang, L. D. Zhang, G. W. Meng, Y. W. Wang, and Z. Q. Chu,
J. Non-Cryst. Solids 277, 63 ͑2000͒.
29X. Li, H. Gao, C. J. Murphy, and K. K. Caswell, Nano Lett. 3, 1495
͑2003͒.
30X. Li, X. Wang, Q. Xiong, and P. C. Eklund, Nano Lett. 5, 1982 ͑2005͒.
31X. Li, H. Gao, C. J. Murphy, and L. Gou, Nano Lett. 4, 1903 ͑2004͒.
32J. Salvetat, A. Kulik, J. Bonard, G. Briggs, T. Stöckli, K. Méténier,
S. Bonnamy, and F. Béguin, Adv. Mater. ͑Weinheim, Ger.͒ 11, 161 ͑1999͒.
33B. Lukic, J. Seo, R. Bacsa, S. Delpeux, F. Béguin, G. Bister, A. Fonseca,
J. Nagy, A. Kis, S. Jeney, A. Kulik, and L. Forró, Nano Lett. 5, 2074
͑2005͒.
34A. San Paulo, J. Bokor, R. Howe, R. He, P. Yang, D. Gao, C. Carraro, and
R. Maboudian, Appl. Phys. Lett. 87, 053111 ͑2005͒.
35B. Wu, A. Heidelberg, and J. J. Boland, Nat. Mater. 4, 525 ͑2005͒.
36W. Ding, D. A. Dikin, X. Chen, R. D. Piner, R. S. Ruoff, E. Zussman,
X. Wang, and X. Li, J. Appl. Phys. 98, 014905 ͑2005͒.
37T. Namazu, Y. Isono, and T. Tanka, J. Microelectromech. Syst. 9, 450
͑2000͒.
38C. Tsou, Y. S. Huang, and H. C. Chang, NSTI-Nanotech. 3, 339 ͑2005͒.
39B. Bhushan, Handbook of Nanotechnology ͑Springer, Berlin, 2004͒,
p. 773.
Financial support for this study from the National
Science Foundation ͑Grant No. EPS-0296165͒, the ACS
Petroleum Research Fund ͑ACS PRF No. 40450-AC10͒, and
the University of South Carolina NanoCenter are highly
appreciated.
40X. Li, B. Bhushan, K. Takashima, C.-W. Baek, and Y.-Y Kim,
Ultramicroscopy 97, 481 ͑2003͒.
41I. Idris and O. Sugiura, Jpn. J. Appl. Phys., Part 1 37, 6562 ͑1998͒.
42IEEE Trans. Electron Devices 25, 1249 ͑1978͒.
131.181.251.131 On: Fri, 21 Nov 2014 23:47:48