3
1.
2.
3.
4.
(a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev.,
2003, 103, 893–930; (b) Vieth, M.; Siegel, M. G.; Higgs, R. E.;
Watson, I. A.; Robertson, D. H.; Savin, K. A.; Durst, G. L.;
compound 4 in moderate yield, which has pharmaceutically
important activity as a corticotropin releasing factor (CRF)
receptor antagonist.14
Hipskind, P. A. J. Med. Chem., 2004, 47, 224–232; (c) Welsch, M.
E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol., 2010,
14, 347–361; (d) Carey, J. S.; Laffan, D.; Thomson, C.; Williams.
M. T. Org. Biomol. Chem., 2006, 4, 2337–2347.
(a) Markham, A.; Faulds. D. Drugs, 1998, 56, 251–256; (b)
Fournier, C.; Hamon, M.; Wannebroucq, J.; Petiprez, S.; Pruvo. J.;
Hecquet, B. Int. J. Pharm., 1994, 106, 41–49; (c) Schmid, R.;
Broger, E. A.; Cereghetti, M.; Crameri, Y.; Foricher, J.; Lalonde,
M.; Muller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U. Pure
Appl. Chem., 1996, 68, 131–138; (d) Liu, J. K.; Couldwell, W. T.
Neurocrit. Care, 2005, 2, 124–132.
(a) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon,
D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.;
Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature, 2012, 492, 95–
99; (b) Liu, B.; Huang, Y. M.; Lan, J. B.; Songa, F. J.; You, J. S.
Chem. Sci., 2013, 4, 2163–2167; (c) Ren,X. Y.; Wen,P.; Shi,X. K.;
Wang,Y. L.; Li,J.; Yang,S. Z.; Yan, H.; Huang, G. S. Org. Lett.,
2013, 15, 5194–5197.
(a) Su, H. C.; Chen, H. F.; F. Fang, C.; Liu, C. C.; C. Wu, C.;
Wong, K. T.; Liu, Y. H.; Peng, S.M. J. Am. Chem. Soc., 2008,
130, 3413–3419; (b) Moon, H. C.; Lodge, T. P.; Frisbie, C. D. J.
Am. Chem. Soc., 2014, 136, 3705–3712; (c) Coe, B. J.; Curati, N.
R. M.; Fitzgerald, E. C.; Coles,S. J.; Horton,P. N.; Light, M. E.;
Hursthouse, M. B. Organometallics, 2007, 26, 2318–2329; (d)
Zhang, S.; Dokko, K.; Watanabe, M. Chem. Mater., 2014, 26,
2915–2926.
(a) Wachter, E.; Heidary,D. K.; Howerton, B. S.; Parkin, S.;
Glazer, E. C. Chem. Commun., 2012, 48, 9649–9651; (b)
Adamson, K.; Dolan, C.; Moran, N.; Forster, R. J.; Keyes, T. E.
Bioconjugate Chem., 2014, 25, 928–944; (c) Chouai, A.; Wicke,
S. E.; Turro, C.; Bacsa, J.; Dunbar, K. R.; Wang, D.; Thummel, R.
P. Inorg. Chem., 2005, 44, 5996–6003; (d) Suntharalingam, K. T.;
Johnstone, C.; Bruno, P. M.; Lin, W.; Hemann, M. T.; Lippard, S.
J. J. Am. Chem. Soc., 2013, 135, 14060–14063; (e) Zhao, Q.; Yu,
M.; Shi, L.; Liu, S.; Li, C.; Shi, M.; Zhou, Z.; Huang, C.; Li, F.
Organometallics, 2010, 29, 1085–1091; (f) Huang, H.; Zhang, P.;
Yu, B.; Chen, Y.; Wang, J.; Ji, L.; Chao, H. J. Med. Chem., 2014,
57, 8971–8983.
(a) Toh, K. K.; Biswas, A.; Wang, Y.-F.; Tan, Y. Y.; Chiba, S. J.
Am. Chem. Soc. 2014, 136, 6011–6020; (b) Mi, X.; Huang, M.;
Zhang, J.; Wang, C.; Wu, Y. Org. Lett. 2013, 15, 6266–6269. (c)
Hayashi, Y.; Santoro, S.; Azuma, Y.; Himo, F.; Ohshima, T.;
Mashima, K. J. Am. Chem. Soc.2013, 135, 6192–6199;
(a) Cao, R.; Jia, J.; Ma, X.; Zhou, M.; Fei, H. J. Med. Chem. 2013,
56, 3636–3644; (b) Gandin, V.; Porchia, M.; Tisato, F.; Zanella,
A.; Severin, E.; Dolmella, A.; Marzano, C. J. Med. Chem. 2013,
56, 7416–7430; (c) Fukuuchi, T.; Doh-ura, K.; Yoshiharab, S.;
Ohta, S. Bioorg. Med. Chem. Lett. 2006, 16, 5982–5987.
Kun, L.; Ying, L.; Di, Z.; Yinbo, F.; Hongyue, G.; Tianyi, M.;
Jiachen, W.; Dan, L.; Linxiang, Z. Bioorg. Med. Chem., 2016, 24,
1889–1897.
Scheme 2. Potential application of the dimeric quinolines in organic
synthesis.
Scheme 3. Control experiment.
In order to shed light on the mechanism, a control experiment
was carried out with the radical inhibitor TEMPO (Scheme 3).
The addition of TEMPO (2 equiv.) did not suppress the
5.
formation of 2a, suggesting that a radical reaction is not involved.
A possible mechanism for this reaction is shown in Scheme 4.
In the first step, under the activation of PyBroP, compound A is
obtained from 1a as reported by Wang and co-workers.15
Nucleophilic attack of Ag2O at the C2-position of the quinoline
affords compound B, which with the assistance of the bromide
anion furnishes intermediate C. Next, intermediate C reacts as a
nucleophile with compound A. Finally, upon the precipitation of
silver ions, the desired product 2a was obtained in high yield.
6.
7.
8.
9.
Mahalingam, M.; Shankar, R.; Butcher, R. J.; Mohan, P. S.;
Kolandaivel, P. J. Molstruc., 2010, 979, 1–11.
10. Nowak, M.; Pluta, K.; Suwińska, K. New J. Chem., 2002, 26,
1216–1220.
11. Zhao, J. J.; Peng, C. L.; Liu, L. Y.; Wang, Y.; Zhu, Q. J. Org.
Chem., 2010, 75, 7502–7504.
Scheme 4. Proposed mechanism.
12. (a) Lian, Y. J.; Coffey, S. B.; Li, Q. F.; Londregan, A. T. Org.
Lett., 2016, 18, 1362−1365; (b) Londregan, A. T.; Burford, K.;
Conn, E. L.; Hesp, K. D. Org. Lett., 2014, 16, 3336−3339; (c)
Castro, B.; Coste, J. PCT Int. Appl., 1990, 90, 10009.
13. Shicmri, K.; Funakoshi, K.; Saeki, S.; Hamana, M. chem. Pharm.
Bull., 1980, 28, 424−430.
14. Takeda, K.; Terauchi, T.; Hashizume, M.; Shikata, K.; Taguchi, R.;
Murata-Tai, K.; Fujisawa, M.; Takahashi, Y.; Shin, K.; Ino, M.;
Shibata, H.; Yonaga, M.; Bioorg. Med. Chem., 2012, 20, 6559–
6578.
In summary, we report a practical and mild method for the
synthesis of O-tethered dimeric quinolines. The dimerization is
operationally simple and exhibits a wide substrate scope,
especially using substrates which contain electron donating
groups.
Acknowledgments
This study was supported by the National Key Research and
Development Program of China (2016YFB0301501), the
National Natural Science Foundation of China (21502090,
21522604 and 21776130), Natural Science Foundation of Jiangsu
Province (BK20150942 and BK20150031).
15. Wang, D.; Zhao, J.; Wang, Y.; Hu, J.; Li, L.; Miao, L.; Feng, H.;
Yu, P. Asian J. Org. Chem., 2016, 5, 1442−1446.
References and notes