Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 6
COMMUNICATION
Journal Name
exhibits a KIE (kH/kD) of 2.51 (0.07), indicating that the hydride
transfer is the turnover-limiting step.
Lewis, A. J. Blake, S. T. Liddle, Proc. Nat. Acad. Sci., 2012, 109
,
DOI: 10.1039/C8CC05030A
9
2
265-9270; (d) T. L. Lohr, Z. Li, T. J. Marks, Acc. Chem., Res.,
016, 49, 824-834.
2
3
4
5
A. K. Dash, J. Q. Wang, M. S. Eisen, Organometallics, 1999, 18,
4
724-4741.
B. D. Stubbert, T. J. Marks, J. Am. Chem. Soc., 2007, 129, 6149-
167.
C. J. Weiss, S. D. Wobser and T. J. Marks, J. Am. Chem. Soc.,
009, 131, 2062-2063
(a) E. Domeshek, R. J. Batrice, S. Aharonovich, B. Tumanskii,
6
2
M. Botoshansky, M. S. Eisen, Dalton Trans., 2013, 42
9
,
069−9078; (b) C. E. Hayes, D. B. Leznoff, Organometallics,
Scheme 3: (bottom) Competitive aldehyde/ketone hydroboration study: with 4-acetyl
benzaldehyde; (top) hydroboration study with benzaldehyde and 4-nitro acetophenone
mediated by complexes 3 or 4.
2
010, 29, 767−774; (c) S. M. Mansell, F. Bonnet, M. Visseaux,
P. L. Arnold, P. L. Dalton Trans., 2013, 42, 9033−9039.
6
(a) V. Mougel, C. Camp, J. Pécaut, C. Copéret, L. Maron, C. E.
Kefalidis, M. Mazzanti, Angew. Chem., Int. Ed., 2012, 51
,
1
2280−12284; (b) P. L. Arnold, S. M. Mansell, L. Maron, D.
McKay, Nat. Chem., 2012,
4
, 668−674; (c) O. P. Lam, S. M.
Franke, F. W. Heinemann, K. Meyer, J. Am. Chem. Soc., 2012,
1
34, 16877−16881; (d) E. M. Matson, W. P. Forrest, P. E.
Fanwick, S. C. Bart, J. Am. Chem. Soc., 2011, 133, 4948−4954.
(a) Z. Lin, T. J. Marks, J. Am. Chem. Soc., 1987, 109, 7979−7985;
7
8
(
b) A. R. Fox, S. C. Bart, K. Meyer, C. C. Cummins, Nature, 2008,
Scheme 4: Stoichiometric reaction between complex
3
and an excess of HBpin.
455, 341−349; (c) J. C. Berthet, M. Ephritikhine, Coord. Chem.
Rev., 1998, 178−180, 83−116.
(a) T. Andrea, E. Barnea, M. S. Eisen, J. Am. Chem. Soc., 2008,
1
30, 2454−2455; (b) I. S. R. Karmel, N. Fridman, M. Tamm, M.
S. Eisen, J. Am. Chem. Soc., 2014, 136, 17180−17192.
9
1
S. D. Wobser, T. J. Marks, Organometallics, 2013, 32,
2
517−2528.
0 (a) R. J. Baker, A. Walshe, Chem. Commun., 2012, 48, 985−987;
b) A. Walshe, J. Fang, L. Maron, R. J. Baker, Inorg. Chem.,
013, 52, 9077−9086.
(
2
1
1
1 R. J. Batrice, C. E. Kefalidis, L. Maron, M. S. Eisen, J. Am. Chem.
Soc., 2016, 138, 2114−2117.
2 (a) H. Liu, M. Khononov, N. Fridman, M. Tamm, M. S. Eisen,
Inorg. Chem., 2017, 56, 3153−3157; (b) T. Ghatak, N. Fridman,
M. S. Eisen, Organometallics, 2017, 36, 1296−1302.
Scheme 5: Proposed catalytic cycle for the actinide-catalysed hydroboration reaction.
A plausible mechanism is presented in Scheme 5.[25] It is crucial to
indicate that the catalytic regeneration of the Th-H bond, with a 13 H. Liu, N. Fridman, M. Tamm, M. S. Eisen, Organometallics,
2
017, 36, 3896-3903.
borane, without forming a macrocycle, is achieved by the high bond
order between the Th-N bond, and the large exothermicity (ΔHcalc.
25.0 kcal/mol) for the Th-H and B-O bond formations (Eq. 2). [26]
1
4 (a) G. Zhang, H. Zeng, J. Wu, Z. Yin, S. Zheng, J. C. Fettinger,
=
Angew. Chem. Int. Ed., 2016, 55, 14369-14372; (b) C. C. Chong,
−
R. Kinjo, ACS Catal., 2015, 5, 3238-3259.
1
1
1
1
1
2
2
2
2
2
2
2
5 M. Arrowsmith, T. J. Hadlington, M. S. Hill, G. Kociok-Kohn,
Chem. Commun., 2012, 48, 4567-4569.
6 C. Gunanathan, M. Holscher, F. Pan, W. Leitner, J. Am. Chem.
Soc., 2012, 134, 14349-14352.
7 Z. Yang, M. Zhong, X. Ma, K. Nijesh, S. De, P. Parameswaran,
H. W. Roesky, J. Am. Chem. Soc., 2016, 138, 2548-2551.
8 D. Mukherjee, H. Osseili, T. P. Spaniol, J. Okuda, J. Am. Chem.
Soc., 2016, 138, 10790-10793.
9 V. L. Weidner, C. J. Barger, M. Delferro, T. L. Lohr, T. J. Marks,
ACS Catal., 2017, 7, 1244-1247.
0 T. A. Eyal Barnea, Moshe Kapon, and Moris S. Eisen, J. Am.
Chem. Soc., 2004, 126, 5066-5067.
In summary, here we present the first example for actinide-catalysed
chemoselective hydroboration of aldehydes and ketones. Aldehydes
are selectively hydroborated over ketones, and the actinide
complexes exhibited an unusual tolerance towards a large variety of
functional groups. The catalytic regeneration of the Th-H bond opens
new possibilities for actinides in catalysis.
1 R. K. Das, E. Barnea, T. Andrea, M. Kapon, N. Fridman, M.
Botoshansky, M. S. Eisen, Organometallics, 2015, 34, 742-752.
2 T. Ghatak, S. Drucker, N. Fridman, M. S. Eisen, Dalton Trans.,
2017, 47, 12005-12009.
Acknowledgments
This work was supported by the Israel Science Foundation administered
by the Israel Academy of Science and Humanities under Contract No.
3 K. Manna, P. Ji, F. X. Greene, W. Lin, J. Am. Chem. Soc., 2016,
1
38, 7488-7491.
7
8/14, and by the PAZY Foundation Fund (2015) administered by the
4 R. R. Langeslay, M. E. Fieser, J. W. Ziller, F. Furche, W. J. Evans,
J. Am. Chem. Soc., 2016, 138, 4036-4045.
Israel Atomic Energy Commission.
5 Detailed analysis of kinetic rate law can be found in Supporting
Information.
References
6 J. A. M. Simoes, J. L. Beauchamp, Chem. Rev., 1990, 90, 629-
1
(a) P. L. Arnold, Z. R. Turner, Nature Rev. Chem., 2017,
1, 0002;
6
88
(
b) T. Andrea, M. S. Eisen, Chem. Soc. Rev., 2008, 37, 550-567;
4
| J. Name., 2018, 00, 1-4
This journal is © The Royal Society of Chemistry 2018
Please do not adjust margins