10.1002/anie.201704175
Angewandte Chemie International Edition
COMMUNICATION
acetone at 40 oC for 5 min generated the corresponding
monofluoromethyl sulfonate in good yields (Scheme 3, 8a-h).
Finally, nitrogen nucleophiles including amides or heteroarenes
such as indazole, pyrazole, imidazole, pyrrolo[2,3-d]pyrimidine
or benzotrizole can also be efficiently monofluoromethylated in
good yields (Scheme 3, 9a-i). Again, no H/D exchange was
observed when 3a-D2 was used in these reactions, which
indicates the nucleophilic substitution pathway (See Supporting
Information for details).
methods for difluoromethylation, see: c) Y. Fujiwara, J. A. Dixon, R. A.
Rodriguez, R. D. Baxter, D. D. Dixon, M. R. Collins, D. G. Blackmond,
P. S. Baran, J. Am. Chem. Soc. 2012, 134, 1494; d) P. S. Fier, J. F.
Hartiwg, J. Am. Chem. Soc. 2012, 134, 5524; e) G. K. S. Prakash, S. K.
Ganesh, J.-P. Jones, A. l. Kulkarni, K. Masood, J. K. Swabeck, G. A.
Olah, Angew. Chem. Int. Ed. 2012, 51, 12090; f) J.-B. Xia, C. Zhu, C.
Chen, J. Am. Chem. Soc. 2013, 135, 17494; g) P. Xu, S. Guo, L.-Y.
Wang, P.-P. Tang, Angew. Chem. Int. Ed. 2014, 53, 5955; h) X.-L.
Jiang, Z.-H. Chen, X.-H. Xu, F.-L. Qing, Org. Chem. Front. 2014, 1, 774;
i) Y. Gu, X.-B. Leng, Q. Shen, Nat. Commun. 2014, 5, 6405, DOI:
10.1038/ncomms6405; j) X.-Y. Deng, J.-H. Lin, J.-C. Xiao, Org. Lett.
2016, 18, 4384; k) K. Aikawa, H. Serizawa, K. Mikami, Org. Lett. 2016,
18, 3690; l) L. Xu, Vicic, D. A. J. Am. Chem. Soc. 2016, 138, 2536; m)
Z. Feng, Q.-Q. Min, X.-P. Fu, L. An, X.-G. Zhang, Nat. Chem. 2017, doi:
10.1038/nchem.2746.
In summary, we have successfully developed two electrophilic
monofluoromethylating reagents S-monofluoromethyl-S-phenyl-
bis(carbomethoxy) methylide sulfonium ylide 3a
and S-
monofluoromethyl-S-(4-nitrophenyl)-bis(carbomethoxy)methylide
sulfonium ylide 3b that can be easily synthesized from easily
available starting materials. Both reagents showed much higher
electrophilicity than the reagents previously reported. A variety
of nucleophiles such as alcohols and malonate derivatives,
sulfonic and carboxylic acids, phenols, amides, and nitrogen of
heteroarenes reacted with either reagent 3a or 3b to give the
corresponding monofluoromethylated products in high yields
under mild conditions. Mechanistic studies by employing
deuterated reagents 3a-D2/3b-D2 suggest that these
monofluoromethylating reactions proceed via an electrophilic
substitution pathway. Further expand the scope of these
reagents are undergoing currently in our laboratory.
[6]
[7]
For transition metal-catalyzed monofluoromethylation, see: a) J.-Y. Hu,
B. Gao, L.-C. Li, C.-F. Nie, J.-B. Hu, Org. Lett. 2015, 17, 3086; b) Y.-M.
Su, G.-S. Feng, Z.-Y. Wang, Q. Lan, X.-S. Wang, Angew. Chem., Int.
Ed. 2015, 54, 6003; c) L. An, Y.-L. Xiao, Q.-Q. Min, X.-G. Zhang,
Angew. Chem. Int. Ed. 2015, 54,9079.
A few nucleophilic monofluoromethylation methods using synthetic
equivalent of fluoromethide species have also been reported. For
selected examples, see: a) Y. Li, J. Hu, Angew. Chem. Int. Ed. 2005,
44, 5882; b) T. Fukuzumi, N. Shibata, M. Sugiura, H. Yasui, S.
Nakamura, T. Toru, Angew. Chem. Int. Ed. 2006, 45, 4973; c) G. K. S.
Prakash, S. Chacko, S. Alconcel, T. Stewart, T. Mathew, G. A. Olah,
Angew. Chem. Int. Ed. 2007, 46, 4933.
[8]
[9]
G. A. Olah, A. Pavlath, Acta Chim. Acad. Sci. Hung. 1953, 3 (203), 425.
R. Iwataa, C. Pascalic, A. Bognic, S. Furumotob, K. Terasakid, K. Yanai,
Appl. Radiat. Isot. 2002, 57, 347.
[10] a) I. I. Gerusa, A. A. Kolomeitsevb, M. I. Kolychevaa, V. P. Kukhar, J.
Fluorine Chem. 2000, 105, 31; b) W. Zhang, L.-G. Zhu, J.-B. Hu,
Tetrahedron 2007, 63, 10569.
Acknowledgements
[11] a) L. Zheng, M. S. Berridge, Appl. Radiat. Isot. 2000, 52, 55; b) M.-R.
Zhanga, M. Ogawaa, K. Furutsukaa, Y. Yoshidaa, K. Suzuki. J.
Fluorine Chem. 2004, 125, 1879.
The authors gratefully acknowledge the financial support
from National Natural Science Foundation of China
(21625206, 21632009, 21372247, 21572258, 21572259,
21421002) and the Strategic Priority Research Program of the
[12] G. K. S. Prakash, I. Ledneczki, S. Chacko, G. A. Olah, Org. Lett. 2008,
10, 557.
Chinese Academy of Sciences (XDB20000000)
.
[13] Y. Nomura, E. Tokunaga, N. Shibata, Angew. Chem. Int. Ed. 2011, 50,
1885.
[14] Hu and co-workers reported the monofluoromethylation of a variety of
nucleophiles such as phenols, thiols, nitrogen of heteroarenes,
phosphines and carboxylic acids with PhSO(NTs)CH2F. The reactions
were proposed to occur via a radical mechanism involving an SET
process: X. Shen, M. Zhou, C.-F. Ni, W. Zhang, J.-B. Hu, Chem. Sci.
2014, 5, 117.
Keywords: fluorine • monofluoromethyl • electrophilic • ylide •
sulfonium ylide
[1]
[2]
a) H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119; b) C.-F. Ni, J.-B.
Hu, Synlett 2011, 6, 770.
a) D. T. Wong, K. W. Perry, F. P. Bymaster, Nat. Rev. Drug Discovery
2005, 4, 764; b) K. L. Kirk, Org. Process Res. Dev. 2008, 12, 305; c) W.
K. Hagmann, J. Med. Chem. 2008, 51, 4359; d) S. Purser, P. R. Moore,
S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320; e) N. A.
Meanwell, J. Med. Chem. 2011, 54, 2529; f) J. Wang, M. Sꢀnchez-
Rosellꢁ, J. Aceꢂa, C. Pozo, A. E. Sorochinsky, S. Fustero, V. A.
Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432.
[15] a) Y.-F. Liu, X.-X. Shao, L. Lu, Q. Shen, Org. Lett. 2015, 17, 2752; b)
J.-S. Zhu, Y.-F. Liu, Q. Shen, Angew. Chem. Int. Ed. 2016, 55, 9050.
[16] For reviews on preparation and applications of sulphur ylides: a) B. M.
Trost, L. S. Melvin, Sulfur Ylide: Emerging Synthetic Intermediates,
Academic Press, New York, 1975; b) V. K. Aggrawal, C. L. Winn, Acc.
Chem. Res. 2004, 37, 611; c) Y. Tang, S. Ye, X-L. Sun, Synlett 2005,
18, 2720; d) A. C. B. Burtoloso, R. M. P. Dias, I. A. Leonarczyk, Eur. J.
Org. Chem. 2013, 5005.
[3]
[4]
Selected reviews for fluoroalkylations: a) T. Liang, C. N. Neumann, T.
Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214; b) X.-H. Xu, K. Matsuzaki,
N. Shibata, Chem. Rev. 2015, 115, 731; c) C.-F. Ni, M.-Y. Hu, J.-B. Hu,
Chem. Rev. 2015, 115, 765; d) X. Yang, T. Wu, R. J. Phipps, F. D.
Toste, Chem. Rev. 2015, 115, 826; e) C. Alonso, E. M. de Marigorta, G.
Rubiales, F. Palacios, Chem. Rev. 2015, 115, 1847.
[17] D. P. Matthews, R. A. Persichetti, J. R. McCarthy, Org. Prep. Proc. Int.
1994, 26, 605.
[18] CCDC 1544317/1544316 contains the supplementary crystallographic
data for the compound 3a/b reported in this communication. These data
can be obtained free of charge from The Cambridge Crystallographic
application to CCDC, 12 Union Road, Cambridge CB2 1 EZ, UK [fax:
+44-1223/336-033; email: deposit@ccdc.cam.ac.uk].
For selected recent reviews on trifluoromethylation methods, see: a) T.
Umemoto, Chem. Rev. 1996, 96, 1757; b) J.-A. Ma, D. Cahard, Chem.
Rev. 2008, 108, PR1; c) S. Roy, B. T. Gregg, G.W. Gribble, V.-D. Le, S.
Roy, Tetrahedron 2011, 67, 2161; d) O. A. Tomashenko, V. V. Grushin,
Chem. Rev. 2011, 111, 4475; e) T. Furuya, A. S. Kamlet, T. Ritter,
Nature 2011, 473, 470; f) T. Besset, C. Schneider, D. Cahard, Angew.
Chem. Int. Ed. 2012, 51, 5048; g) F.-L. Qing, Chin. J. Org. Chem. 2012,
32, 815; h) T. Liu, Q. Shen, Eur. J. Org. Chem. 2012, 6679; h) J.
Charpentier, N. Früh, A. Togni Chem. Rev. 2015, 105, 650.
[5]
For recent reviews on difluoromethylation methods, see: a) J.-B. Hu, W.
Zhang, F. Wang, Chem. Commun. 2009, 7465; b) A. Koperniku, H.-Q.
Liu, P. B. Hurley, Eur. J. Org. Chem. 2016, 5, 871; For selected
This article is protected by copyright. All rights reserved.