J. Am. Chem. Soc. 2001, 123, 12917-12918
12917
Table 1. Asymmetric Hydrosilylations Using Catalytic CuH and
Roche BIPHEP Ligand 1
Ligand-Accelerated, Copper-Catalyzed Asymmetric
Hydrosilylations of Aryl Ketones
Bruce H. Lipshutz,* Kevin Noson, and Will Chrisman
Department of Chemistry & Biochemistry
UniVersity of California, Santa Barbara, California 93106
ReceiVed June 25, 2001
Within the field of catalytic asymmetric synthesis,1 hydrosi-
lylations of carbon-carbon and carbon-heteroatom double bonds
are viewed as a valued alternative to asymmetric hydrogenation.2
Since the first reports appeared about three decades ago, research
continues to focus on ketones and related systems (e.g., imines),3
with most of the methods relying on ligated rhodium hydride
catalysts.4 Impressive chemical yields and enantioselectivities of
product alcohols have also been documented from reactions
involving nonracemic titanium hydrides,5a-c and alternatives which
promote complexes of ruthenium can also effect such transforma-
tions.6 No single procedure appears to be ideal, each having its
virtues as well as limitations. Issues such as costs can be
associated with (1) the metal (e.g., Ru or Rh) or (2) the ligand
(e.g., nonracemic Brintzinger titanocenes),7 or both; (3) their
recovery and reuse, and potentially (4) the stoichiometric source
of hydride (e.g., PhSiH3). Finally, ratios in the 50-500:1 range2a
of substrate to either catalyst or ligand rarely approach those
associated with related hydrogenations.8 We now describe asym-
metric hydrosilylations of aryl ketones mediated by catalytic
quantities of bidentate phosphine-ligated copper hydride9 which
are efficient, occur under very mild conditions, afford competitive
levels of enantioselectivity, and can be performed with very high
ratios of substrate to ligand (S/L).
a Isolated. See ref 5d. b ee values were determined by conversion of
each product to its acetate and analysis by chiral capillary GC.
c Reaction was run at -78 °C. d Reaction was given 10 h at -50 °C
and then warmed to room temperature. e Reaction was run at -50 °C.
f R′ ) o-Br. g R′ ) m-Br. h R′ ) o-Cl.
Our recent observation10 that bidentate ligands (e.g., DPPF and
racemic BINAP) significantly enhance the rate of 1,2-reduction
of 4-tert-butylcyclohexanone by catalytic amounts of Stryker’s
reagent11a (hexameric (Ph3P)CuH) led to trials involving nonra-
cemic BINAP and various aryl ketones. Under a given set of
conditions (3 mol % (Ph3P)CuH, 3% BINAP, 0.34 equiv of
PMHS,12 toluene, -78 °C), acetophenone, propiophenone, and
R-tetralone gave good levels of enantioselectivity (75, 86, and
80% ee, respectively). A series of other ligands were screened,
including bidentate phosphines (e.g., BINAPFu,13a phanephos,13b
a hexafluoro-BINAP analog13c), P,N ligands (e.g., MAP),13d and
nonracemic diamines (e.g., PINDY),13e which in all cases led to
no observed reaction. Complete hydrosilylation was observed
employing JOSIPHOS,13f Trost’s ligand,13g DIOP,13h Et-ferro-
TANE,13i and Me-DuPHOS,13j although the enantioselectivity in
each case was low (<45% ee). On the basis of these results, we
returned to a bidentate diaryl-substituted phosphine as part of a
biaryl array (analogous to BINAP) which appeared to be critical
for selective stereoinduction.
(1) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds. ComprehensiVe
Asymmetric Catalysis I-III; Springer-Verlag: New York, 1999.
(2) (a) Nishiyama, H.; Itoh, K. Asymmetric Hydrosilylation and Related
Reactions. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley VCH:
New York, 2000; Chapter 2. (b) Waldman, T. E.; Schaefer, G.; Riley, D. P.
Discrete Chiral Rhodium Phosphine Complexes as Catalysts for Asymmetric
Hydrosilation of Ketones. In SelectiVity in Catalysis; Davis, M. E., Suib, S.
L., Eds.; American Chemical Society: Washington, DC, 1993.
(3) Verdaguer, X.; Lange, U. E. W.; Reding, M. T.; Buchwald, S. L. J.
Am. Chem. Soc. 1996, 118, 6784.
(4) (a) Sawamura, M.; Kuwano, R.; Ito, Y. Angew. Chem., Int. Ed. Engl.
1994, 33, 111. (b) Sudo, A.; Yoshida, H.; Saigo, K. Tetrahedron: Asymmetry
1997, 8, 3205. (c) Nishiyama, H.; Sakaguchi, H.; Nakamura, T.; Horihata,
M.; Kondo, M.; Itoh, K. Organometallics 1989, 8, 846.
(5) (a) Yun, J.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 5640. (b)
Rahimian, K.; Harrod, J. F. Inorg. Chim. Acta 1998, 270, 330. (c) Imma, H.;
Mori, M.; Nakai, T. Synlett 1996, 1229. (d) The products are known; cf.:
Carter, M. B.; Schiott, B.; Gutierrez, A.; Buchwald, S. L. J. Am. Chem. Soc.
1994, 116, 11667.
(6) (a) Zhu, G.; Terry, M.; Zhang, X. J. Organomet. Chem. 1997, 547, 97.
(b) Nishibayashi, Y.; Takei, I.; Uemura, S.; Hidai, M. Organometallics 1998,
17, 3420.
(7) Schafer, A.; Karl, E.; Zsolnai, L.; Huttner, G.; Brintzinger, H.-H. J.
Organomet. Chem. 1987, 328, 87; racemic ethylenebis(4,5,6,7-tetrahydro-1-
indenyl)titanium dichloride is listed at 500 mg for $375.00 from Strem
Chemicals (1999-2001 catalog).
(8) Ohkuma, T.; Kitamura, M.; Noyori, R. Asymmetric Hydrogenation. In
Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley VCH: New York, 2000;
Chapter 1.
(9) Brunner, H.; Miehling, W. J. Organomet. Chem. 1984, 275, C17.
(10) Lipshutz, B. H.; Chrisman, W.; Noson, K. J. Organomet. Chem. 2001,
624, 367.
(11) (a) Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem.
Soc. 1988, 110, 291. (b) Churchill, M. R.; Bezman, S. A.; Osborn, J. A.;
Wormald, J. Inorg. Chem. 1972, 11, 1818.
(12) PMHS ) poly(methylhydrosiloxane; a 29mer, with one hydride per
monomeric unit; MW 1900); CAS Registry No. 9004-73-3, available from
Lancaster Chemicals and used as received. Thus, 0.34 equiv of a 29mer is
(0.34 equiv × 29) or ca. 9-10 equiv of hydride per substrate.
(13) (a) Anderson, N. G.; Parvez, M.; Keay, B. A. Org. Lett. 2000, 2, 2817.
(b) Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider,
P. J. J. Am. Chem. Soc. 1997, 119, 6207. (c) Prof. A. Yudin, University of
Toronto, personal communication. (d) Vyskocil, S.; Smrcina, M.; Hanus, V.;
Polasek, M.; Kocovsky, P. J. Org. Chem. 1998, 63, 7738. (e) Malkov, A. V.;
Bella, M.; Langer, V.; Kocovsky, P. Org. Lett. 2000, 2, 3047. (f) Togni, A.;
Breutel, C.; Schnyder, A.; Spindler, F.; Landert, H.; Tijani, A. J. Am. Chem.
Soc. 1994, 116, 4062. (g) Trost, B. M.; Van Vranken, D. L.; Bingel, C. J.
Am. Chem. Soc. 1992, 114, 9327. (h) Dumont, W.; Poulin, J. C.; Dang, T.-P.;
Kagan, H. B. J. Am. Chem. Soc. 1973, 95, 8259. (i) Berens, U.; Burk, M. J.;
Gerlach, A.; Hems, W. Angew. Chem., Int. Ed. 2000, 39, 1981. (j) Burk, M.
J. J. Am. Chem. Soc. 1991, 113, 8518.
10.1021/ja011529e CCC: $20.00 © 2001 American Chemical Society
Published on Web 12/19/2001