Organometallics
Article
(1) CuI is detected experimentally when CuII(OTf)2 is added
to DMF, but not in solvents that do not support catalysis.
(2) Experimental and DFT studies suggest that the reactive
IIII species are cations of general structure [Mes(Ph)I]+.
(3) DFT calculations show four low-energy pathways for
oxidative transfer of “Ar+” from [Mes(Ar)I]+ to CuI,
forming cis-Ar(F)CuIII species. These pathways proceed
from [CuF(OTf)]− (2 pathways), CuF(DMF) (1
pathway), and [CuF2]− (1 pathway). All have activation
parameters that are lower than those for decomposition
of Mes(Ar)IF in the absence of Cu.
(4) DFT studies of the highest energy pathway [from
CuF(DMF)] do not show a viable transition structure for
mesityl group transfer. However, pathways commencing
with [CuF(OTf)]− and [CuF2]− enabled comparisons of
the relative energies of Ar versus Mes transfer from
[Mes(Ar)I]+. For the five aryl groups examined,
agreement with experiment is found in all cases
commencing from [CuF(OTf)]− and in four commenc-
ing from [CuF2]−. Notably, with [CuF2]−, smaller ΔΔG⧧
values for Ar versus Mes transfer are observed across the
board, suggesting that this single anomaly may not be
significant.
(d) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
(e) Deprez, N. R.; Sanford, M. S. Inorg. Chem. 2007, 46, 1924.
(f) Zhdankin, V. V. Chem. Rev. 2002, 102, 2523.
(2) For examples of metal-free nucleophilic reactions with diary-
liodonium salts, see ref 1 and: (a) Wagner, A. M.; Sanford, M. S. J. Org.
Chem. 2014, 79, 2263. (b) Umierski, N.; Manolikakes, G. Org. Lett.
2013, 15, 188. (c) Jalalian, N.; Ishikawa, E. E.; Silva, L. F.; Olofsson, B.
Org. Lett. 2011, 13, 1552. (d) Laudge, K. P.; Jang, K. S.; Lee, S. Y.; Chi,
D. Y. J. Org. Chem. 2012, 77, 5705. (e) Grushin, V. V.; Kantor, M. M.;
Tolstaya, T. P.; Scherbina, T. M. Izv. Akad. Nauk SSSR, Ser. Khim.
1984, 2338.
(3) For Cu-catalyzed C-heteroatom coupling reactions with Ar2I+,
see: (a) Sokolovs, I.; Lubriks, D.; Suna, E. J. Am. Chem. Soc. 2014, 136,
́
6920. (b) Fananas-Mastral, M.; Feringa, B. L. J. Am. Chem. Soc. 2014,
̃
136, 9894. (c) Lv, T.; Wang, Z.; You, J.; Lan, J.; Gao, G. J. Org. Chem.
2013, 78, 5723. (d) Cullen, S. C.; Shekhar, S.; Nere, N. K. J. Org.
Chem. 2013, 78, 12194. (e) Xu, J.; Zhang, P.; Gao, Y.; Chen, Y.; Tang,
G.; Zhao, Y. J. Org. Chem. 2013, 78, 8176. (f) Vaddula, B.; Leazer, J.;
Varma, R. S. Adv. Syn. Catal. 2012, 354, 986.
(4) (a) Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. Org. Lett.
2013, 15, 5134. (b) Ichiishi, N.; Brooks, A. F.; Topczewski, J. J.;
Rodnick, M. E.; Sanford, M. S.; Scott, P. J. H. Org. Lett. 2014, 16, 3224.
(5) Cu-catalyzed C−C coupling reactions with Ar2I+: (a) Baralle, A.;
Fensterbank, L.; Goddard, J.-P.; Ollivier, C. Chem.Eur. J. 2013, 19,
10809. (b) Kieffer, M. E.; Chuang, K. V.; Reisman, S. E. J. Am. Chem.
Soc. 2013, 135, 5557. (c) Collins, B. S. L.; Suero, M. G.; Gaunt, M. J.
Angew. Chem., Int. Ed. 2013, 52, 5799. (d) Phipps, R. J.; McMurray, L.;
Ritter, S.; Duong, H. A.; Gaunt, M. J. J. Am. Chem. Soc. 2012, 134,
10773. (e) Zhu, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2012, 134,
10815. (f) Duong, H. A.; Gilligan, R. E.; Cooke, M. L.; Phipps, R. J.;
Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 463. (g) Phipps, R. J.;
Gaunt, M. J. Science 2009, 323, 1593.
(6) (a) Malmgren, J.; Santoro, S.; Jalalian, N.; Himo, F.; Olofsson, B.
Chem.Eur. J. 2013, 19, 10334. (b) Grushin, V. V. Acc. Chem. Res.
1992, 25, 529. (c) Grushin, V. V.; Demkina, I. I.; Tolstaya, T. P. J.
Chem. Soc., Perkin Trans. 2 1992, 505. (d) Chun, J. H.; Lu, S.; Lee, Y.
S.; Pike, V. W. J. Org. Chem. 2010, 75, 3332.
(7) DFT calculations on Cu-catalyzed reactions with diaryliodonium
salts: (a) Chen, B.; Hou, X.-L.; Li, Y.-X.; Wu, Y.-D. J. Am. Chem. Soc.
2011, 133, 7668. DFT calculations on Pd-catalyzed reactions with
diaryliodonium salts: (b) Canty, A. J.; Ariafard, A.; Sanford, M. S.;
Yates, B. F. Organometallics 2013, 32, 544.
Overall, our experimental and DFT studies of this system
illustrate flexibility in the ligand environment that will support a
CuI/III catalytic cycle for ArF coupling. As such, these studies
suggest that there is considerable latitude for the development
of CuI/III-catalyzed aryl−X bond-forming reactions beyond the
immediate successful protocol for Cu(OTf)2-catalyzed fluori-
nation of diaryliodonium salts.3,8,30
ASSOCIATED CONTENT
* Supporting Information
■
S
Complete ref 16, computation for the reaction of [CuF(OTf)]−
with [Mes(Ar)I]+ for mesityl transfer, energy parameters,
Cartesian coordinates and Gaussview diagrams of all optimized
structures, and full details of all experiments. This material is
(8) (a) Zhang, H.; Yao, B.; Zhao, L.; Wang, D- X.; Xu, B- Q.; Wang,
M.-X. J. Am. Chem. Soc. 2014, 136, 6326. (b) Casitas, A.; Ribas, X.
Chem. Sci. 2013, 4, 2301. (c) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc.
2012, 134, 10795. (d) Casitas, A.; King, A. E.; Parella, T.; Costas, M.;
Stahl, S. S.; Ribas, X. Chem. Sci. 2010, 1, 326. (e) Yao, B.; Wang, D. X.;
Huang, Z. T.; Wang, M. X. Chem. Commun. 2009, 2899.
AUTHOR INFORMATION
Corresponding Authors
■
(9) Goodgame, D. M. L.; Goodgame, M.; Canham, G. W. R. Nature
1969, 222, 866.
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
(10) Muzart, J. Tetrahedron 2009, 65, 8313.
(11) For examples of the reduction of CuII with DMF, see:
(a) Malkhasian, A. Y. S.; Finch, M. E.; Nikolovski, B.; Menon, A.;
Kucera, B. E.; Chavez, F. A. Inorg. Chem. 2007, 46, 2950. (b) Teo, J. J.;
Chang, Y.; Zeng, H. C. Langmuir 2006, 22, 7369.
Notes
The authors declare no competing financial interest.
(12) Lockhart, T. P. J. Am. Chem. Soc. 1983, 105, 1940.
ACKNOWLEDGMENTS
(13) Ali, B. F.; Al-Sou’od, K.; Al-Jaar, N.; Nassar, A.; Zaghal, M. H.;
Judeh, Z.; Al-Far, R.; Al-Refai, M.; Ibrahim, M.; Mansi, K.; Al-Obaidi,
K. H. J. Coord. Chem. 2006, 59, 229.
(14) We have also tested running the fluorination process in a
cosolvent of EtOAc/DMF (0.1 M in PhIMes+, 4:1). This afforded 86%
overall yield (98:2 selectivity).
(15) A possible alternative mechanism would be a SET pathway. We
have not conducted an extensive investigation of such processes.
(16) Gaussian 09 was used at the BP86 level for calculations with
N,N-dimethylformamide as solvent and utilizing the quadruple-ξ
valence polarized def2-QZVP basis set on Cu and iodine along with
the corresponding ECP and the 6-311+G(2d,p) basis set on other
atoms. See Supporting Information for full details.
■
We thank the Australian Research Council and the U.S.
National Institutes of Health (GM 073836) for financial
support, and the Australian National Computational Infra-
structure and the University of Tasmania for computing
resources.
REFERENCES
■
(1) For reviews on diaryliodonium salts, see: (a) Yusubov, M. S.;
Maskaev, A. V.; Zhdankin, V. V. Arkivov 2011, 2011, 370. (b) Merritt,
E. A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052. (c) Canty, A.
J.; Rodemann, T.; Ryan, J. H. Adv. Organomet. Chem. 2008, 55, 279.
I
dx.doi.org/10.1021/om5007903 | Organometallics XXXX, XXX, XXX−XXX