Angewandte
Chemie
J. N. H. Reek, J. Am. Chem. Soc. 2004, 126, 4056 – 4057; V. F.
Slagt, P. W. N. M. van Leeuwen, J. N. H. Reek, Angew. Chem.
2003, 115, 5777 – 5781; Angew. Chem. Int. Ed. 2003, 42, 5619 –
5623; V. F. Slagt, P. W. N. M. van Leeuwen, J. N. H. Reek, Chem.
Commun. 2003, 2474 – 2475; K. Ding, H. Du, Y. Yuan, J. Long,
Chem. Eur. J. 2004, 10, 2872 – 2884.
[4] M. T. Reetz, T. Sell, A. Meiswinkel, G. Mehler, Angew. Chem.
2003, 115, 814 – 817; Angew. Chem. Int. Ed. 2003, 42, 790 – 793.
[5] J. D. Watson, F. H. C. Crick, Nature 1953, 171, 964 – 967; M. D.
Topal, J. R. Fresco, Nature 1976, 263, 285 – 289.
[6] H. I. Abdulla, M. F. El-Bermani, Spectrochim. Acta Part A 2001,
57, 2659 – 2672.
[7] G. Pfister-Guillouzo, C. Guimon, J. Frank, J. Ellison, A. R.
Katritzky, Liebigs Ann. Chem. 1981, 366 – 375.
[8] A. R. Osborn, K. Schofield, L. N. Short, J. Chem. Soc. 1956,
4191 – 4206.
[9] CCDC-254720 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from
m.ac.uk/data_request/cif.
Crystal
data
for
5aa-PtCl2
C47H49Cl2N3O3P2Pt; Mr = 1031.82; T= 100(2) K; l = 0.71073 ꢂ;
¯
crystal system: triclinic; space group: P1; a = 11.4445(2), b
= 12.6925(3), c = 16.1777(3) ꢂ, a = 92.8636(12),
= 95.4611(11), g = 109.5054(10)8; V= 2196.66(8) ꢂ3; Z = 2;
1calcd = 1.560 Mgmꢀ3 absorption coefficient: 3.433 mmꢀ1
b
;
;
F(000) = 1036; crystal size: 0.3 ꢀ 0.2 ꢀ 0.1 mm; q range for data
collection: 1.71–27.498; limiting indices: ꢀ14 ꢁ h ꢁ 14, ꢀ16 ꢁ k ꢁ
16, ꢀ20 ꢁ l ꢁ 21; 25457 reflections collected, 10036 reflections
unique (Rint = 0.0312); completeness to q = 25.008:99.9%;
absorption correction: semi-empirical from equivalents; max.
and min. transmission: 0.711 and 0.640; refinement method: full-
matrix least-squares on F2; data/restraints/parameters: 10036/0/
536; GoF on F2: 1.076; final R indices [I > 2s(I)]: R1 = 0.0207,
wR2 = 0.0467; R indices (all data): R1 = 0.0239, wR2 = 0.0477;
largest diff. peak and hole: 0.919 and ꢀ1.430 eꢂꢀ3
.
[10] “31P and 13C NMR of Transition Metal Phosphine Complexes”:
P. S. Pregosin, R. W. Kunz in NMR Basic Principles and Progress,
Vol. 16 (Eds.: P. Diehl, E. Fluck, R. Kosfeld), Springer, Heidel-
berg, 1979, pp. 115 – 122, and references therein; P. S. Pregosin,
S. N. Sze, Helv. Chim. Acta 1978, 61, 1848 – 1855.
[11] see “31P and 13C NMR of Transition Metal Phosphine Com-
plexes”: P. S. Pregosin, R. W. Kunz in NMR Basic Principles and
Progress, Vol. 16 (Eds.: P. Diehl, E. Fluck, R. Kosfeld), Springer,
Heidelberg, 1979, pp. 94 – 95; H. G. Alt, R. Baumgartner, H. A.
Brune, Chem. Ber. 1986, 119, 1694 – 1703.
[12] P. W. N. M. van Leeuwen, C. P. Casey, G. T. Whiteker in Rho-
dium Catalyzed Hydroformylation (Eds.: P. W. N. M. van Leeu-
wen, C. Claver), Kluwer Academic Publishers, Dordrecht, 2000,
chap. 4, pp. 76 – 105.
[13] see P. W. N. M. van Leeuwen, C. P. Casey, G. T. Whiteker in
Rhodium Catalyzed Hydroformylation (Eds.: P. W. N. M. van
Leeuwen, C. Claver), Kluwer Academic Publishers, Dordrecht,
2000, chap. 4, pp. 63 – 75; B. Breit, W. Seiche, Synthesis 2001, 1 –
36.
[14] Under identical conditions Rh/triphenylphosphine (TOF:
1312 hꢀ1, 76:24), Rh/6-DPPon (1; TOF: 3284 hꢀ1, 98:2), for
tBu-Xanthphos see ref. [2]. See also ref. [12].
Angew. Chem. Int. Ed. 2005, 44, 1640 –1643
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1643