Inorganic Chemistry
Article
Lin, W. B. Nanoscale metal-organic frameworks for therapeutic,
imaging, and sensing applications. Adv. Mater. 2018, 30, 1707634.
(11) (a) Loukopoulos, E.; Kostakis, G. E. Recent advances of one-
dimensional coordination polymers as catalysts. J. Coord. Chem. 2018,
71, 371−410. (b) Zhang, T.; Lin, W. B. Metal-organic frameworks for
artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43,
5982−5993. (c) Wen, M. C.; Mori, K.; Kuwahara, Y.; An, T. C.;
Yamashita, H. Design and architecture of metal organic frameworks
for visible light enhanced hydrogen production. Appl. Catal., B 2017,
218, 555−569.
(12) (a) Castro, K.; Rodrigues, R.; Mendes, R. F.; Neves, M.;
Simoes, M.; Cavaleiro, J. A. S.; Almeida Paz, F. A.; Tome, J. P.;
Nakagaki, S. New copper porphyrins as functional models of catechol
oxidase. J. Catal. 2016, 344, 303−312. (b) Zhang, Y.; Yang, X.; Zhou,
H.-C. Synthesis of MOFs for heterogeneous catalysis via linker design.
Polyhedron 2018, 154, 189−201. (c) Li, C.; Tang, H.; Fang, Y.; Xiao,
Z.; Wang, K.; Wu, X.; Niu, H.; Zhu, C.; Zhou, H.-c. Bottom-up
assembly of a highly efficient metal-organic framework for cooperative
catalysis. Inorg. Chem. 2018, 57, 13912−13919.
(13) (a) Mantovani, K.; Molgero Westrup, K. C.; da Silva, R. M.;
Jaerger, S.; Wypych, F.; Nakagaki, S. Oxidation catalyst obtained by
the immobilization of layered double hydroxide/Mn(III) porphyrin
on monodispersed silica spheres. Dalton Trans. 2018, 47, 3068−3073.
(b) Li, G. D.; Zhao, S. L.; Zhang, Y.; Tang, Z. Y. Metal−organic
frameworks encapsulating active nanoparticles as emerging compo-
sites for catalysis: recent progress and perspectives. Adv. Mater. 2018,
30, 1800702. (c) Sotnik, S. A.; Polunin, R. A.; Kiskin, M. A.; Kirillov,
A. M.; Dorofeeva, V. N.; Gavrilenko, K. S.; Eremenko, I. L.;
Novotortsev, V. M.; Kolotilov, S. V. Heterometallic Coordination
Polymers Assembled from Trigonal Trinuclear Fe2Ni-Pivalate Blocks
and Polypyridine Spacers: Topological Diversity, Sorption, and
Catalytic Properties. Inorg. Chem. 2015, 54, 5169−5181.
(22) Kramer, W. W.; McCrory, C. C. L. Polymer coordination
promotes selective CO2 reduction by cobalt phthalocyanine. Chem.
Sci. 2016, 7, 2506−2515.
(23) Xu, H. W.; Williard, P. G.; Bernskoetter, W. H. C−H bond
activation and S-atom transfer from cobalt(III) thiolate and
isothiocyanate complexes. Dalton Trans. 2014, 43, 14696−14700.
(24) Hazra, S.; Pilania, P.; Deb, M.; Kushawaha, A. K.; Elias, A. J.
Aerobic Oxidation of Primary Amines to Imines in Water using a
Cobalt Complex as Recyclable Catalyst under Mild Conditions. Chem.
- Eur. J. 2018, 24, 15766−15771.
(25) Chakrabarty, R.; Bora, S. J.; Das, B. K. Synthesis, Structure,
Spectral and Electrochemical Properties, and Catalytic Use of
Cobalt(III)-Oxo Cubane Clusters. Inorg. Chem. 2007, 46, 9450−
9462.
(26) Kharat, A. N.; Bakhoda, A.; Jahromi, B. T. Green and
chemoselective oxidation of alcohols with hydrogen peroxide: A
comparative study on Co(II) and Co(III) activity toward oxidation of
alcohols. Polyhedron 2011, 30, 2768−2775.
(27) Gu, J. Z.; Liang, X. X.; Cai, Y.; Wu, J.; Shi, Z. F.; Kirillov, A. M.
Hydrothermal assembly, structures, topologies, luminescence, and
magnetism of a novel series of coordination polymers driven by a
trifunctional nicotinic acid building block. Dalton Trans. 2017, 46,
10908−10925.
(28) Gu, J. Z.; Cui, Y. H.; Liang, X. X.; Wu, J.; Lv, D. Y.; Kirillov, A.
M. Structurally distinct metal-organic and H-bonded networks
derived from 5-(6-carboxypyridin-3-yl)isophthalic acid: coordination
and template effect of 4,4′-bipyridine. Cryst. Growth Des. 2016, 16,
4658−4670.
(29) (a) Gu, J. Z.; Cai, Y.; Qian, Z. Y.; Wen, M.; Shi, Z. F.; Lv, D. Y.;
Kirillov, A. M. A new series of Co, Ni, Zn, and Cd metal-organic
architectures driven by an unsymmetrical biphenyl-tricarboxylic acid:
hydrothermal assembly, structural features and properties. Dalton
Trans. 2018, 47, 7431−7444. (b) Gu, J. Z.; Wen, M.; Liang, X.; Shi,
Z.-F.; Kirillova, M. V.; Kirillov, A. M. Multifunctional Aromatic
Carboxylic Acids as Versatile Building Blocks for Hydrothermal
Design of Coordination Polymers. Crystals 2018, 8, 83.
(30) Gu, J. Z.; Cai, Y.; Wen, M.; Shi, Z. F.; Kirillov, A. M. A new
series of Cd(II) metal-organic architectures driven by soft ether-
bridged tricarboxylate spacers: synthesis, structural and topological
versatility, and photocatalytic properties. Dalton Trans. 2018, 47,
14327−14339.
(14) (a) Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.;
Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as
selectivity regulators for hydrogenation reactions. Nature 2016, 539,
76−80. (b) Kang, Y. S.; Lu, Y.; Chen, K.; Zhao, Y.; Wang, P.; Sun, W.
Y. Metal−organic frameworks with catalytic centers: from synthesis to
catalytic application. Coord. Chem. Rev. 2019, 378, 262−280.
(15) (a) Song, Z. X.; Cheng, N. C.; Lushington, A.; Sun, X. L.
Recent progress on MOF-derived nanomaterials as advanced
electrocatalysts in fuel cells. Catalysts 2016, 6, 116−134.
(b) Huang, N.; Drake, H.; Li, J.; Pang, J.; Wang, Y.; Yuan, S.;
Wang, Q.; Cai, P. Y.; Qin, J. S.; Zhou, H. C. Flexible and hierarchical
metal−organic framework composites for high-performance catalysis.
Angew. Chem., Int. Ed. 2018, 57, 8916−8920. (c) Kumar, G.; Das, S.
K. Coordination frameworks containing compounds as catalysts.
Inorg. Chem. Front. 2017, 4, 202−233.
́
(31) (a) Fernandes, T. A.; Santos, C. I. M.; Andre, V.; Kłak, J.;
Kirillova, M. V.; Kirillov, A. M. Copper(II) Coordination Polymers
Self-assembled from Aminoalcohols and Pyromellitic Acid: Highly
Active Pre-catalysts for the Mild Water-promoted Oxidation of
Alkanes. Inorg. Chem. 2016, 55, 125−135. (b) Dias, S. S. P.; Kirillova,
́
M. V.; Andre, V.; Kłak, J.; Kirillov, A. M. New tricopper(II) cores self-
(16) Lu, X. B.; Darensbourg, D. J. Cobalt catalysts for the coupling
of CO2 and epoxides to provide polycarbonates and cyclic carbonates.
Chem. Soc. Rev. 2012, 41, 1462−1484.
assembled from aminoalcohol biobuffers and homophthalic acid:
synthesis, structural and topological features, magnetic properties and
mild catalytic oxidation of cyclic and linear C5−C8 alkanes. Inorg.
Chem. Front. 2015, 2, 525−537. (c) Kirillova, M. V.; Kirillov, A. M.;
(17) Chen, X. X.; Ren, J. T.; Xie, H.; Sun, W.; Sun, M.; Wu, B.
Cobalt(III)-catalyzed 1,4-addition of C−H bonds of oximes to
maleimides. Org. Chem. Front. 2018, 5, 184−188.
́
Kuznetsov, M. L.; Silva, J. A. L.; Frausto da Silva, J. J. R.; Pombeiro, A.
J. L. Alkanes to carboxylic acids in aqueous medium: metal-free and
metal-promoted highly efficient and mild conversions. Chem.
Commun. 2009, 2353−2355.
́
(18) Bagherzadeh, M.; Ashouri, F.; Đakovic, M. Synthesis,
characterizations and catalytic studies of a new two-dimensional
metal−organic framework based on Co-carboxylate secondary
building units. J. Solid State Chem. 2015, 223, 32−37.
́
(32) Sliwa, E. I.; Nesterov, D. S.; Kłak, J.; Jakimowicz, P.; Kirillov, A.
́
M.; Smolenski, P. Unique Copper-Organic Networks Self-Assembled
(19) Qin, L.; Lu, K.; Li, X.; Yan, J. J.; Lin, W. J.; Ding, W. Q.; Lu, H.;
Lin, D. T.; Ma, D. Y.; Liang, F. L. Unusual 1D tape of pentameric and
tetrameric water clusters trapped in a 2D cobalt(II) coordination
polymer: synthesis, characterization, and catalytic properties. J. Inorg.
Organomet. Polym. Mater. 2016, 26, 460−466.
from 1,3,5-Triaza-7-Phosphaadamantane and its Oxide: Synthesis,
Structural Features, Magnetic and Catalytic Properties. Cryst. Growth
Des. 2018, 18, 2814−2823.
(33) (a) Nesterov, D. S.; Nesterova, O. V. Polynuclear Cobalt
Complexes as Catalysts for Light-Driven Water Oxidation: A Review
of Recent Advances. Catalysts 2018, 8, 602. (b) Nesterova, O. V.;
Kopylovich, M. N.; Nesterov, D. S. Stereoselective oxidation of
alkanes with m-CPBA as an oxidant and cobalt complex with
isoindole-based ligands as catalysts. RSC Adv. 2016, 6, 93756−93767.
(34) Zheng, X. B.; Fan, R. Q.; Song, Y.; Wang, A.; Xing, K.; Du, X.;
Wang, P.; Yang, Y. L. A highly sensitive turn-on ratiometric
(20) Wang, F. Artificial photosynthetic systems for CO2 reduction:
progress on higher efficiency with cobalt complexes as catalysts.
ChemSusChem 2017, 10, 4393−4402.
(21) Kornienko, N.; Zhao, Y. B.; Kley, C. S.; Zhu, C. H.; Kim, D.;
Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. D. Metal−organic
frameworks for electrocatalytic reduction of carbon dioxide. J. Am.
Chem. Soc. 2015, 137, 14129−14135.
J
Inorg. Chem. XXXX, XXX, XXX−XXX