C O M M U N I C A T I O N S
Scheme 3a
Spectral Core Facility, Columbia University) for mass spectral and
NMR spectroscopic analysis.
Supporting Information Available: Experimental procedures,
copies of spectral data, and characterization. This material is available
References
(1) (a) Corey, E. J. Angew. Chem., Int. Ed. 2009, 48, 2100–2117. (b) Corey,
E. J. Angew. Chem., Int. Ed. 2002, 41, 1650–1667. (c) Bear, B. R.; Sparks,
S. M.; Shea, K. J. Angew. Chem., Int. Ed. 2001, 40, 820–849. (d) Williams,
R. M.; Stocking, E. M. Angew. Chem., Int. Ed. 2003, 42, 3078–3115. (e)
Jørgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 3558–3588.
(2) (a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G.
Angew. Chem., Int. Ed. 2002, 41, 1668–1698. (b) Danishefsky, S. Acc.
Chem. Res. 1981, 14, 400–406.
a Key: (a) xylene, reflux, 36 h. (b) 0.05 M HCl, THF, 2 h, 67% for 2
steps. (c) nBu3SnH, AIBN, benzene, reflux, 2 h, 89%. (d) TFAA, benzene,
Dean-Stark, 24 h, 60%. (e) toluene, 130 °C, 36 h, 90%. (f) nBu3SnH,
AIBN, benzene, reflux, 2 h. (g) HF, CH3CN, rt, 10 min, 53% for 2 steps.
(3) (a) Corey, E. J. Pure Appl. Chem. 1967, 19–37. (b) Corey, E. J.; Wipke,
W. T. Science 1969, 166, 178–192. (c) Corey, E. J. Angew. Chem., Int.
Ed. 1991, 30, 455–612. (d) Corey, E. J.; Chelg, X. The Logic of Chemical
Synthesis; Wiley-VCH: New York, 1995.
reaction could not be conducted in 2,2,2-trifluoroethanol because
of rapid conversion of the diene to the corresponding ketone,
methoxybutenone. Accordingly, the reaction was conducted in
xylene under reflux, as shown in Scheme 3. This treatment gave
rise to a mixture of endo and exo Diels-Alder product, indicated
as 16. Again, we examined the stereochemical outcome of the
denitration reaction when conducted at one of the two different
stages. Thus, when reduction was conducted at the stage of the
ketone 16 (obtained by prior hydrolysis of the silyl enol ether
function), a 2:1 ratio of trans/cis octalones was obtained. In contrast,
when the denitration was conducted at the silyl enol ether stage
and the denitration product was subjected to acid hydrolysis of the
silyl enol ether, an 8:1 ratio of trans-17 to cis-18 was produced.20
Once again, we see how the chemistry described above points the
way to introduction of trans ring junctions in Diels-Alder driven
constructions.
(4) (a) Wilson, R. M.; Danishefsky, S. J. Acc. Chem. Res. 2006, 39, 539–549.
(b) Wilson, R. M.; Danishefsky, S. J. J. Org. Chem. 2007, 72, 4293–4305.
(5) The possibility of epimerizing a cis junction, obtained from a Diels-Alder
reaction, to the trans series was well recognized and practiced by Woodward
and co-workers in their total synthesis of steroids. Other instances of
epimerization are also cited herein. (a) Woodward, R. B.; Sondheimer, F.;
Taub, D.; Heusler, K.; McLamore, W. M. J. Am. Chem. Soc. 1952, 74,
4223–4251. (b) Stevens, R. V.; Angle, S. R.; Kloc, K.; Mak, K. F.;
Trueblood, K. N.; Liu, Y.-X. J. Org. Chem. 1986, 51, 4347–4353, and
references therein. (c) Mukhopadhyay, A.; Ali, S. M.; Husain, M.;
Suryawanshi, S. N.; Bhakuni, D. S. Tetrahedron Lett. 1989, 30, 1853–
1856. Of course, this approach requires a vicinal keto group to enable
epimerization and the capacity to apply strict thermodynamic or kinetic
controls to govern the junction stereochemistry.
(6) Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. 1969, 8, 781–
932.
(7) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York,
2001 and pertinent references cited therein.
(8) (a) Danishefsky, S.; Prisbylla, M. P.; Hiner, S. J. Am. Chem. Soc. 1978,
100, 2918–2920. (b) Corey, E. J.; Estreicher, H. Tetrahedron Lett. 1981,
22, 603–606.
In summary then, while many provocative possibilities remain
to be explored, the chemistry described above already holds promise
for application to two types of situations. In the hydrindane series,
denitration can be used to generate a cis fusion, thereby establishing
a Diels-Alder equivalency for the otherwise inert cyclopentene.
By contrast in the octalin series, it is possible to take advantage of
this chemistry to produce, selectively, trans junctions. In that sense,
the nitrocyclohexene will have served in a Diels-Alder context as
an equivalent of the otherwise unavailable dienophile, E-cyclohex-
ene. Studies addressing a menu of follow-up possibilities suggested
by these findings are in progress.
(9) (a) Ono, N.; Miyake, H.; Tamura, R.; Kaji, A. Tetrahedron Lett. 1981, 22,
1705–1708. (b) Ono, N.; Miyake, H.; Kamimura, A.; Hamamoto, I.;
Tamura, R.; Kaji, A. Tetrahedron 1985, 41, 4013–4023. (c) Ono, N.;
Miyake, H.; Kaji, A. J. Chem. Soc., Chem. Commun. 1982, 33–34.
(10) Corey, E. J.; Estreicher, H. J. Am. Chem. Soc. 1978, 100, 6294–6295.
(11) Breslow, R.; Guo, T. J. Am. Chem. Soc. 1988, 110, 5613–5617.
(12) Following completion of this work, we noted that in footnote 18 in ref 10,
Professor Corey futuristically envisioned potential value of reductive
denitration at the junction. However no results are provided. Nonetheless
the kernel of the idea can be found in Corey’s comment.
(13) Lee, J. H.; Kim, W. H.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50,
5482–5484.
(14) Jung, M. E.; McCombs, C. A. Tetrahedron Lett. 1976, 17, 2935–2938.
(15) Cycloaddition of compound 3 with several 2-silyloxy-1,3-butadienes as well
as diene 8 in toluene under the variety of conditions did not proceed at all.
(16) (a) Oritani, T.; Yamashita, K. J. Org. Chem. 1984, 49, 3689–3694. (b)
Rao, H. S. P.; Reddy, K. S. Tetrahedron Lett. 1994, 35, 171–174. (c)
Augustine, R. L. J. Org. Chem. 1958, 23, 1853–1856. (d) Macdonald, T. L.;
Mahalingam, S. J. Am. Chem. Soc. 1980, 102, 2113–2115.
(17) Krawczyk, A. R.; Jones, J. B. J. Org. Chem. 1989, 54, 1795–1801.
(18) Okuda, Y.; Morizawa, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1984,
25, 2483–2486, and pertinent references cited therein.
(19) Danishefsky, S.; Kitahara, T. J. Am. Chem. Soc. 1974, 96, 7807–7808.
(20) (a) Corey, E. J.; Boger, D. L. Tetrahedron Lett. 1978, 19, 4597–4600. (b)
Angell, E. C.; Fringuelli, F.; Pizzo, F.; Taticchi, A.; Wenkert, E. J. Org.
Chem. 1988, 53, 1424–1426.
Acknowledgment. Support was provided by the NIH (HL25848
and CA103823 to SJD). WHK is grateful for a Korea Research
Foundation Grant funded by the Korean government (KRF-2007-
357-c00060). We thank Rebecca Wilson and Dana Ryan for
assistance with the preparation of the manuscript and Prof. W. F.
Berkowitz and Dr. Pavel Nagorny for helpful discussions. We also
thank Dr. George Sukenick, Ms. Hui Fang, Sylvi Rusli (NMR Core
Facility, Sloan-Kettering Institute) and Dr. Yasuhiro Itagaki (Mass
JA9058926
9
12578 J. AM. CHEM. SOC. VOL. 131, NO. 35, 2009