the microscopic change of molecular location and to the
successive large structural change in the LCST transition.
Furthermore, the enhanced emission originating from the
aggregated state of 2 decreased faster than the CD signal.
The result indicates that the AIEE behavior is more sensitive
to the molecular environmental change than the exciton
interaction, suggesting that the AIEE behavior can be used
as a sensitive probe for the microscopic environmental change.
This work was supported by CREST, JST and by a
Grant-in-Aid for Young Scientists (A) (No. 19685013) and a
Grant-in-Aid for Science Research in a Priority Area ‘‘New
Frontiers in Photochromism’’ (471) (No. 19050009) from the
MEXT, Japan. T. H. acknowledges JSPS for the young
scientist fellowship.
Notes and references
1 L. S. Hung and C. H. Chen, Mater. Sci. Eng., R, 2002, 39, 143;
S. J. Toal, K. A. Jones, D. Magde and W. C. Trogler, J. Am. Chem.
Soc., 2005, 127, 11661.
2 S. A. Jenekhe and J. A. Osaheni, Science, 1994, 265, 765; G. Yu,
S. Yin, Y. Liu, J. Chen, X. Xu, X. Sun, D. Ma, X. Zhen, Q. Peng,
Z. Shuai, B. Tang, D. Zhu, W. Fang and Y. Luo, J. Am. Chem.
Soc., 2005, 127, 6335.
3 T. Sato, D.-L. Jiang and T. Aida, J. Am. Chem. Soc., 1999, 121,
10658; H. Langhals, O. Krotz, K. Polvorn and P. Mayer, Angew.
Chem., Int. Ed., 2005, 44, 2427; A. Wakamiya, K. Mori and
S. Yamaguchi, Angew. Chem., Int. Ed., 2007, 46, 4273.
4 R. Deans, J. Kim, M. R. Machacek and T. M. Swager, J. Am.
Chem. Soc., 2000, 122, 8565; Y. Ren, J. W. Y. Lam, Y. Dong,
B. Z. Tang and K. S. Wong, J. Phys. Chem. B, 2005, 109, 1135.
5 B.-K. An, S.-K. Kwon, S.-D. Jung and S. Y. Park, J. Am. Chem.
Soc., 2002, 124, 14410; H. Tong, Y. Hong, Y. Dong, Y. Ren,
Fig. 5 Temperature dependence of (a) UV-Vis (3 Â 10À5 M), (b)
fluorescence (3 Â 10À6 M) and (c) CD (3 Â 10À5 M) spectra of
compound 2 in water upon heating. (d) The plot of absorbance at
600 nm (red circle plots), fluorescent intensity (green square plots), and
CD intensity (blue triangle plots) at its maximum wavelength against
temperature. (e) An illustration of microscopic structural change and
successive LCST transitions of 2 upon temperature change. Red
spheres denote water molecules.
compound has no absorption, the LCST of an aqueous
solution of 2 was determined to be 60 1C (Fig. 5(d), red plot).
Fluorescence and CD spectra of aqueous solutions of 2 were
also affected by the temperature. As shown in Fig. 5(b), the
intensity of fluorescence decreased with a blue shift of the
maximum wavelength from 497 to 477 nm upon heating.
Considering the fact that the shape of fluorescence spectra
more closely resembled that in ethyl acetate with rising
M. Haussler, J. W. Y. Lam, K. S. Wong and B. Z. Tang, J. Phys.
¨
Chem. B, 2007, 111, 2000.
6 D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes and J. S. Moore,
Chem. Rev., 2001, 101, 3893; J. H. K. K. Hirschberg, L. Brunsveld,
A. Ramzi, J. A. J. M. Vekemans, R. P. Sijbesma and E. W. Meijer,
Nature, 2000, 407, 167.
7 M. Levitus and M. A. G. Garibay, J. Phys. Chem. A, 2000, 104,
8632.
8 T. Hirose, M. Irie and K. Matsuda, Chem.–Asian J., 2009, 4, 58.
9 M. Kasha, H. R. Rawls and M. A. El-Bayoumi, Pure Appl. Chem.,
1965, 11, 371; O. Ohno, Y. Kaizu and H. Kobayashi, J. Chem.
Phys., 1993, 99, 4128; T. E. Kaiser, H. Wang, V. Stepanenko and
temperature, the aggregated state of compound
2 at
low temperature turned more monomer-like state at high
temperature. Interestingly, the changes of fluorescence spectra
occurred in the temperature range from 20 to 60 1C rather
than at 60 1C where the LCST transition was observed
(Fig. 5(d), green plot). The AIEE effect was almost completely
diminished just below the LCST.
F. Wurthner, Angew. Chem., Int. Ed., 2007, 46, 5541.
¨
10 N. Harada and K. Nakanishi, Circular Dichroic Spectroscopy—
Exciton Coupling in Organic Stereochemistry, University Science
Books, Mill Valley, CA, 1983; N. Harada, S. L. Chen and
K. Nakanishi, J. Am. Chem. Soc., 1975, 97, 5345; S. Matile,
N. Berova and K. Nakanishi, J. Am. Chem. Soc., 1995, 117, 7021.
11 T. Hirose, K. Matsuda and M. Irie, J. Org. Chem., 2006, 71, 7499;
T. Hirose, M. Irie and K. Matsuda, Adv. Mater., 2008, 20, 2137.
12 The intensity of the CD was identical whether the sample solution
in optical cell was stirred or not during measurements, swirling-
flow induced macroscopic LD component was thus negligible in
this case: A. Tsuda, M. A. Alam, T. Harada, T. Yamaguchi,
N. Ishii and T. Aida, Angew. Chem., Int. Ed., 2007, 46, 8198;
The intensity of CD spectra also decreased upon heating
(Fig. 5(c)). The temperature dependence of the CD spectra
shows interesting behavior. The decrease of CD signal clearly
proceeded in two stages; the first gradual decrease was
observed in the temperature range from 20 to 60 1C and
subsequent rapid decrease occurred around 60 1C (Fig. 5(d),
blue plot). Although the absorbance of 2 did not change so
much when the temperature is raised from 20 to 60 1C, the
intensity of CD signal decreased by a factor of half and
the fluorescence spectra showed a significant decrease. The
decrease of the exciton-coupled CD signal shows that the
spatial alignment of the transition dipole moments changed
and the exciton interaction between moments significantly
decreased. Thus, the CD signal seems sensitive both to
M. Wolffs, S. J. George, Z. Tomovic, S. C. J. Meskers, A. P. H.
´
J. Schenning and E. W. Meijer, Angew. Chem., Int. Ed., 2007, 46,
8203.
13 T. Tani, T. Suzumoto, K. Kemnitz and K. Yoshihara, J. Phys.
Chem., 1992, 96, 2778; N. Kometani, H. Nakajima, K. Asami,
Y. Yonezawa and O. Kajimoto, J. Phys. Chem. B, 2000, 104, 9630.
14 H.-J. Kim, E. Lee, H.-S. Park and M. Lee, J. Am. Chem. Soc.,
2007, 129, 10994; L. D. Taylor and L. D. Cerankowski, J. Polym.
Sci., 1975, 13, 2551; H. G. Schild, Prog. Polym. Sci., 1992, 17, 163.
ꢀc
This journal is The Royal Society of Chemistry 2009
5834 | Chem. Commun., 2009, 5832–5834