bound materials can be economically recycled. Their use in
organic synthesis simplifies the reaction procedures, as these
reactions generally require simple filtration to remove the
polymer-bound materials without the necessity of aqueous
workup, resulting in less aqueous and organic waste than
otherwise generated from the workup procedure. Consequently,
development and use of polymer-supported reagents in various
reactions are crucial for practicing green chemistry. In addition,
reactions employing solid-supported reagents can be analytically
monitored in a manner similar to those using other conventional
reagents.
Solid-Supported Acids for Debenzylation of Aryl
Benzyl Ethers
Thaninee Petchmanee,† Poonsakdi Ploypradith,*,† and
Somsak Ruchirawat†,‡
Laboratory of Medicinal Chemistry, Chulabhorn Research
Institute, VipaVadee-Rangsit Highway,
Bangkok 10210, Thailand, and Program on Research and
DeVelopment of Synthetic Drugs, Institute of Science and
Technology for Research and DeVelopment, Mahidol UniVersity,
Salaya Campus, Nakhon Pathom, Thailand
A number of protecting groups for phenol have been
developed and used extensively in organic synthesis for many
years.2 The benzyl group and its derivatives have been employed
as hydroxy-protecting groups for their ease of preparation and
removal and their chemical stability toward a number of reaction
conditions. Their versatility makes them ideal for protecting
group manipulation. In general, conditions employed for
aromatic debenzylation fall into the categories of (1) catalytic
hydrogenolysis3 (H2 in the presence of Pd/C or Raney Ni), (2)
reductive cleavage4 (Na or Ca in NH3), (3) iodide-mediated
debenzylation5 (TMSI or NaI in the presence of BF3‚Et2O), (4)
metal-mediated debenzylation6 (TiCl3 in the presence of Mg),
(5) Lewis-acid-mediated debenzylation7 ((a) AlCl3 in the
presence of N,N-dimethylaniline or (b) BF3‚Et2O in the presence
of (1) ethanethiol or (2) 2-bromo-1,3,2-benzodioxaborole), and
(6) acid-mediated cleavage8 ((a) CF3CO2H in the presence of
(1) thioanisole and/or CH3OSO3F or CF3OSO3F and (2)
pentamethylbenzene or (b) concentrated HCl in refluxing EtOH).
Each method offers its own advantages but possesses some
limitations. As a result, there still exists a need for developing
new methods for aromatic debenzylation.
ReceiVed NoVember 10, 2005
Solid-supported acids have been investigated for aromatic
debenzylation reactions. Stoichiometric amounts of solid-
supported acids in refluxing toluene with or without 4 equiv
of methanol effectively provided the desired aromatic de-
benzylation products of various systems in moderate to
excellent yields (up to 98%).
Our interest in developing a new method for aromatic
debenzylation arises in part from our synthetic program for
lamellarins (1) whose structures contain substituted polyoxy-
genated aromatics on their periphery. Two of our synthetic
approaches9 for lamellarins require substituted benzyl-protected
aromatic synthons 2-5 (Scheme 1). In addition, we have
The development and utility of solid-supported reagents in
organic synthesis have been well documented over a number
of years as they have found wide application by serving as
reagents, catalysts, or scavengers.1 In principle, these polymer-
(2) (a) Greene, T. W.; Wuts, P. G. M. ProtectiVe Groups in Organic
Synthesis, 3rd ed.; John Wiley & Sons: New York, 1999; pp 246-286. (b)
Kocienski, P. J. Protecting Groups, 3rd ed.; Georg Thieme Verlag: Stuttgart,
2003; Chapter 4.
† Chulabhorn Research Institute.
‡ Mahidol University, Salaya Campus.
(1) (a) Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach,
A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S.
J. J. Chem. Soc., Perkin Trans. 1 2000, 3815-4195. (b) Flowers, R. A.;
Xu, X.; Timmons, C.; Li, G. Eur. J. Org. Chem. 2004, 2988-2990. (c)
Pennington, T. E.; Kardiman, C.; Hutton, C. A. Tetrahedron Lett. 2004,
45, 6657-6660. (d) Chiang, G. C. H.; Olsson, T. Org. Lett. 2004, 6, 3079-
3082. (e) Tashino, Y.; Togo, H. Synlett 2004, 2010-2012. (f) Jaunzems,
J.; Kashin, D.; Scho¨nberger, A.; Kirschning, A. Eur. J. Org. Chem. 2004,
3435-3446. (g) Petricci, E.; Mugnaini, C.; Radi, M.; Correlli, F.; Botta,
M. J. Org. Chem. 2004, 69, 7880-7887. (h) Donati, D.; Morelli, C.;
Porcheddu, A.; Taddei, M. J. Org. Chem. 2004, 69, 9316-9318. (i) Li, X.;
Wu, X.; Chen, W.; Hancock, F. E.; King, F.; Xiao, J. Org. Lett. 2004, 6,
3321-3324. (j) Deprele, S.; Montchamp, J. Org. Lett. 2004, 6, 3805-3808.
(k) Weno, M.; Togo, H. Synthesis 2004, 2673-2677. (l) Ballini, R.; Fiorini,
D.; Palmieri, A. Tetrahedron Lett. 2004, 45, 7027-7029. (m) Marinescu,
L. G.; Pedersen, C. M.; Bols, M. Tetrahedron 2005, 61, 123-127. (n)
Dueymes, C.; Scho¨nberger, A.; Adamo, I.; Navarro, A.-E.; Meyer, A.;
Lange, M.; Imbach, J.-L.; Link, F.; Morvan, F.; Vasseur, J.-J. Org. Lett.
2005, 7, 3485-3488. (o) Yadav, J. S.; Reddy, B. V. S.; Vishnumurthy, P.
Tetrahedron Lett. 2005, 46, 1311-1313. (p) Chretien, J.-M.; Zammattio,
F.; Le Grognec, E.; Paris, M.; Cahingt, B.; Montavon, G.; Quintard, J.-P.
J. Org. Chem. 2005, 70, 2870-2873. (q) Maki, T.; Ishihara, K.; Yamamoto,
H. Org. Lett. 2005, 7, 5043-5046.
(3) (a) Bu¨chi, G.; Weinreb, S. M. J. Am. Chem. Soc. 1971, 93, 746-
752. (b) Deng, W.-P.; Zhong, M.; Guo, X.-C.; Kende, A. S. J. Org. Chem.
2003, 68, 7422-7427.
(4) (a) Loev, B.; Dawson, C. R. J. Am. Chem. Soc. 1956, 78, 6095-
6098. (b) Hwu, J. R.; Wein, Y. S.; Leu, Y.-J. J. Org. Chem. 1996, 61,
1493-1499.
(5) (a) Lott, R. S.; Chauhan, V. S.; Stammer, C. H. J. Chem. Soc., Chem.
Commun. 1979, 495-497. (b) Vankar, Y. D.; Rao, C. T. J. Chem. Res.,
Synop. 1985, 232-233.
(6) Kadam, S. M.; Nayak, S. K.; Banerji, A. Tetrahedron Lett. 1992,
33, 5129-5132.
(7) (a) Akiyama, T.; Hirofuji, H.; Ozaki, S. Tetrahedron Lett. 1991, 32,
1321-1324. (b) Fuji, K.; Ichikawa, K.; Node, M.; Fujita, E. J. Org. Chem.
1979, 44, 1661-1664. (c) King, P. F.; Stroud, S. G. Tetrahedron Lett. 1985,
26, 1415-1418.
(8) For CF3SO3H, see: (a) Kiso, Y.; Isawa, H.; Kitagawa, K.; Akita, T.
Chem. Pharm. Bull. 1978, 26, 2562-2564. (b) Kiso, Y.; Ukawa, K.;
Nakamura, S.; Ito, K.; Akita, T. Chem. Pharm. Bull. 1980, 28, 673-676.
(c) Yoshino, H.; Tsuji, M.; Kodama, M.; Komeda, K.; Niikawa, N.; Tanase,
T.; Asakawa, N.; Nose, K.; Yamatsu, K. Chem. Pharm. Bull. 1990, 38,
1735-1737. For concentrated HCl in refluxing EtOH, see: (d) Sae-Lao,
P.; Kittakoop, P.; Rajviroongit, S. Tetrahedron Lett. 2006, 47, 345-348.
10.1021/jo052337v CCC: $33.50 © 2006 American Chemical Society
Published on Web 03/04/2006
2892
J. Org. Chem. 2006, 71, 2892-2895