Recently, we have investigated the development of new
porous and structured materials from renewable resources,
particularly from chitin. This area of research has great
(i) the higher surface areas and the macroporous network of
these scaffolds which are important for the diffusion of bulk
molecules to (and from) the active site, (ii) the high
dispersion of titanium nanoparticles, which play a crucial
role in catalysis, and (iii) the robustness of these microspheres
9
importance for the development of cleaner and more efficient
1
0
processes. In this respect, we report herein an interesting
cooperative effect in catalysis using hybrid chitosan@titania
porous materials. The preparation of these nanoreactors
consists first in the gelation of chitosan biopolymer in basic
conditions, which allows shaping chitosan as a hydrocolloid
11
assessed under hydrothermal, acidic, and basic conditions.
The stability of these hybrids is very relevant as the faint
stability of organic polymers generally limits their use as
support.
1
1
microsphere (Figure 1). This swelled polymer was pro-
tracted in titanium alkoxide solution [Ti(Acac) (OiPr)
Ti(OiPr) , or Ti(OBu) ], and then the respectively obtained
M1H, M2H, and M3H chitosan@titania hybrid alcogels
were dried under CO supercritical conditions. Nitrogen
2
2
,
4
4
2
adsorption isotherms demonstrated the macroporous character
of the materials, with a specific surface area ranging from
2
-1 11
3
70 to 480 m g . SEM analysis showed a fibrillar network
Figure 1
.
Chemical structure of chitosan.
of the secondary structure of the biopolymer (Figure 2). TEM
analysis revealed the existence of highly dispersed titanium
1
1
nanoparticles. Both the fibrillar network of the biopolymer
and the presence of amine functions play a pivotal role to
direct the growth and mineralization of titanium precursors
leading to the replication of polysaccharide fibers by highly
dispersed titanium dioxide nanoparticles. Excitingly, these
hybrid materials are imparted with three main advantages:
(4) For reviews, see: (a) Margelefsky, E. L.; Zeidan, R. K.; Davis, M. E.
Chem. Soc. ReV. 2008, 37, 1118–1126. (b) Chechik, V. Annu. Rep. Prog.
Chem., Sect. B 2008, 104, 331–348. (c) Tada, M.; Motokura, K.; Iwasawa,
Y. Top. Catal. 2008, 48, 32–40. (d) Notenstein, J. M.; Katz, A. Chem.sEur.
J. 2006, 12, 3954–3965.
Figure 2
.
Photo and SEM of M1H.
(
5) (a) Climent, M. J.; Corma, A.; Garcia, H.; Guil-Lopez, R.; Iborra,
1
2
S.; Forn e´ s, V. J. Catal. 2001, 197, 385–393. (b) Climent, M. J.; Corma,
A.; Iborra, S.; Velty, A. J. Mol. Catal. A: Chem. 2002, 182-183, 327–
Intrigued by this acid-base cohabitation, we decided to
examine how these hybrid materials could catalyze coop-
eratively different condensation reactions involving carbonyl
3
42. (c) Climent, M. J.; Corma, A.; Forn e´ s, V.; Guil-Lopez, R.; Iborra, S.
AdV. Synth. Catal. 2002, 344, 1090–1096.
6) (a) Hruby, S. L.; Shanks, B. H. J. Catal. 2009, 263, 181–188. (b)
Anan, A.; Quellette, W.; Sharma, K. K.; Asefa, T. Catal. Lett. 2008, 126,
(
activation. It was expected that the presence of both NH
2
1
2
2
42–148. (c) Sharma, K. K.; Asefa, T. Angew. Chem., Int. Ed. 2007, 46,
879–2882. (d) Zeidan, R. K.; Hwang, S.-J.; Davis, M. E. J. Catal. 2007,
47, 379–382. (e) Bass, J. D.; Solovyov, A.; Pascall, A. J.; Katz, A. J. Am.
and titanium clusters in close proximity could cooperatiVely
actiVate the electrophile and nucleophile reactants and
consequently enhance the reaction rates of the desired
organic transformations. Herein we investigate this approach
for specific model reactions (Henry condensation, Michael
addition, jasminal synthesis) and report the proof of concept
of the synergetic effect between the two catalytic site
partners.
Chem. Soc. 2006, 128, 3737–3747. (f) Zeidan, R. K.; Hwang, S.-J.; Davis,
M. E. Angew. Chem., Int. Ed. 2006, 45, 6332–6335. (g) McKittrick, M. W.;
Jones, C. W. J. Am. Chem. Soc. 2004, 126, 3052–3053. (h) Hicks, J. C.;
Dabestani, R.; Buchanan, A. C.; Jones, C. W. Chem. Mater. 2006, 18, 5022–
5
032.
(
7) (a) Motokura, K.; Tada, M.; Iwasawa, Y. J. Am. Chem. Soc. 2009,
1
31, 7944. (b) Solin, N.; Lu, H.; Schnai, C.; Terasaki, O. Catal. Commun
2
009, 10, 1386–1389. (c) Puglisi, A.; Annunziata, R.; Nenaglia, M.; Cozzi,
F.; Gervasini, A.; Bertacche, V.; Sala, M. C. AdV. Synth. Catal. 2009, 351,
First, Henry condensation of nitromethane with 4-meth-
oxybenzaldehyde as a prototype was investigated because it
illustrates the paradoxical statement that initiated the present
219–229. (d) Motokura, K.; Tomita, M.; Tada, M.; Iwasawa, Y. Chem.sEur.
J. 2008, 14, 4017–4027. (e) Motokura, K.; Tada, M.; Iwasawa, Y. Chem.
Asian J. 2008, 3, 1230–1236. (f) Motokura, K.; Tada, M.; Iwasawa, Y.
J. Am. Chem. Soc. 2007, 129, 9540–9541. (g) Huh, S.; Chen, H. T.; Wiench,
J. Z.; Pruski, M.; Lin, V. S.-Y. Angew. Chem., Int. Ed. 2005, 44, 1826–
13
work (Table 1). The catalytic performances using the
1
830. (h) Huh, S.; Chen, H.-T.; Wiench, J. W.; Pruski, M.; Lin, V. S-Y.
J. Am. Chem. Soc. 2004, 126, 1010–1011.
8) For an elegant work describing an in situ generation of a spatially
various porous chitosan@titania among different catalysts
are shown in Table 1. Actually, chitosan@titania micro-
spheres were found to be the more active catalysts (entries
4-6). With chitosan alone, featuring a similar texture, the
reaction proceeded smoothly, and a quantitative yield was
(
grafted bifunctional site, see: (a) Margelefsky, E. L.; Bendjeriou, A.; Zeidan,
R. K.; Dufaud, V.; Davis, M. E. J. Am. Chem. Soc. 2008, 130, 13442–
1
3449. For the positioning of two distinct functional groups in the channels,
see: (b) Alauzun, J.; Mehdi, A.; Reye, C.; Corriu, R. J. P. J. Am. Chem.
Soc. 2006, 128, 8718–8719. (c) Mouawia, R.; Mehdi, A.; Reye, C.; Corriu,
R. J. P. J. Mater. Chem. 2008, 18, 4193–4203.
(12) An interesting topic is recently introduced by Stephan by designing
homogenous noncoordinated Lewis pairs (known as F. L. P.: Frustrated
Lewis Pairs). These bifunctional pairs exhibit an unusual reactivity. See
for review: Stephan, D. W Org. Biomol. Chem. 2008, 6, 1535–1539.
(13) (a) Ma, K.; You, J. Chem.sEur. J. 2007, 13, 1863–1871. (b)
Palomo, C.; Oiarbide, M; Laso, A. Angew. Chem., Int. Ed. 2005, 44, 3881–
3884. (c) Risgaard, T.; Gothelf, K. V.; Jorgensen, K. A. Org. Biomol. Chem.
2003, 1, 153–156. (d) Ooi, T.; Doda, K.; Maruoka, K. J. Am. Chem. Soc.
2003, 125, 2054–2055.
(
9) (a) Valentin, R.; Molvinger, K.; Quignard, F.; Brunel, D. New
J. Chem. 2003, 27, 1690–1692. (b) Molvinger, K.; Quignard, F.; Brunel,
D.; Boissiere, M.; Devoisselle, J. M. Chem. Mater. 2004, 16, 3367–3372.
(
c) El Kadib, A.; Molvinger, K.; Guimon, C.; Quignard, F.; Brunel, D.
Chem. Mater. 2008, 20, 2198–2204.
10) (a) Guibal, E. Prog. Polym. Sci. 2005, 30, 71–109. (b) Macquarrie,
D. J.; Hardy, J. J. E. Ind. Eng. Chem. Res. 2005, 44, 8499–8520.
11) See Supporting Information for details.
(
(
Org. Lett., Vol. 12, No. 5, 2010
949