Organic Letters
Letter
Umehara, N.; Akiyama, T. Chem. Sci. 2018, 9, 7327−7331. (e) Kang,
Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847−
11849. (f) Han, Y.; Han, W.; Hou, X.; Zhang, X.; Yuan, W. Org. Lett.
2012, 14, 4054−4057. (g) Tian, J.-J.; Zeng, N.-N.; Liu, N.; Tu, X.-S.;
Wang, X.-C. ACS Catal. 2019, 9, 295−300. (h) Zhou, G.; Zhang, J.
Chem. Commun. 2010, 46, 6593−6595. (i) Zhou, G.; Liu, F.; Zhang, J.
Chem. - Eur. J. 2011, 17, 3101−3104. (j) Zeng, Q.; Zhang, L.; Yang,
J.; Xu, B.; Xiao, Y.; Zhang, J. Chem. Commun. 2014, 50, 4203−4206.
(k) Li, Y.; Li, W.; Zhang, J. Chem.Eur. J. 2016, 22, 1−47. (l) Qian,
D.; Zhang, J. Chem. Rec. 2014, 14, 280−302.
TMS-substituted substrate, only the alkenyl fluoride was
identified.
We have demonstrated a mild, efficient, and versatile
method for construction of tetrahydroquinoline derivatives
from easily available propargyl alcohols with an ortho-amino
substituted phenyl group. A plausible reaction mechanism
involving a BF3·OEt2-promoted propargyl alcohol rearrange-
ment/[1,5]-hydride transfer/internal imino-aldol cyclization
tandem process is proposed. The formation of keto-products
or alkenyl fluoride is dependent on the substitution mode of
the alkyne. [1,5]-Hydride transfer/cyclization resulting in
trans-carbofluorination of the internal alkyne is responsible
for the formation of the alkenyl fluoride. Further studies to
expand the reaction scope and elucidate the mechanism are
ongoing in our laboratory.
̈
(5) Jurberg, I. D.; Peng, B.; Wostefeld, E.; Wasserloos, M.; Maulide,
N. Angew. Chem., Int. Ed. 2012, 51, 1950−1953.
(6) Pastine, S. J.; Sames, D. Org. Lett. 2005, 7, 5429−5431.
(7) (a) Ramakumar, K.; Maji, T.; Partridge, J. J.; Tunge, J. A. Org.
Lett. 2017, 19, 4014−4017. (b) Chang, Y.-Z.; Li, M.-L.; Zhao, W.-F.;
Wen, X.; Sun, H.; Xu, Q.-L. J. Org. Chem. 2015, 80, 9620−9627.
(c) Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419−
422.
ASSOCIATED CONTENT
* Supporting Information
■
(8) Bolte, B.; Gagosz, F. J. Am. Chem. Soc. 2011, 133, 7696−7699.
(9) (a) Jurberg, I. D.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc.
S
́
́
2010, 132, 3543−3552. (b) Cambeiro, F.; Lopez, S.; Varela, J. A.; Saa,
C. Angew. Chem., Int. Ed. 2012, 51, 723−727. (c) Shikanai, D.;
Murase, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2009, 131, 3166−
3167. (d) Tobisu, M.; Nakai, H.; Chatani, N. J. Org. Chem. 2009, 74,
5471−5475. (e) Bajracharya, G. B.; Pahadi, N. K.; Gridnev, I. D.;
Yamamoto, Y. J. Org. Chem. 2006, 71, 6204−6210. (f) Iwasawa, N.;
Watanabe, S.; Ario, A.; Sogo, H. J. Am. Chem. Soc. 2018, 140, 7769−
7772. (g) Odedra, A.; Datta, S.; Liu, R.-S. J. Org. Chem. 2007, 72,
The Supporting Information is available free of charge on the
Experimental procedures, spectral and analytical data,
copies of 1H, 19F, and 13C NMR spectra for new
3289−3292. (h) Barluenga, J.; Sigueiro, R.; Vicente, R.; Ballesteros,
̈
AUTHOR INFORMATION
Corresponding Authors
́
A.; Tomas, M.; Rodríguez, M. A. Angew. Chem., Int. Ed. 2012, 51,
10377−10381.
■
́ ́
(10) (a) Barluenga, J.; Fananas-Mastral, M.; Aznar, F.; Valdes, C.
̃
Angew. Chem., Int. Ed. 2008, 47, 6594−6597. (b) Barluenga, J.;
́ ́
Fananas-Mastral, M.; Fernandez, A.; Aznar, F. Eur. J. Org. Chem.
̃
2011, 2011, 1961−1967.
ORCID
(11) (a) Shu, X.-Z.; Ji, K.-G.; Zhao, S.-C.; Zheng, Z.-J.; Chen, J.; Lu,
L.; Liu, X.-Y.; Liang, Y.-M. Chem. - Eur. J. 2008, 14, 10556−10559.
(b) Zhao, S.-C.; Shu, X.-Z.; Ji, K.-G.; Zhou, A.-X.; He, T.; Liu, X.-Y.;
Liang, Y.-M. J. Org. Chem. 2011, 76, 1941−1944. (c) Xia, X.-F.; Song,
X.-R.; Wang, N.; Wei, H.-H.; Liu, X.-Y.; Liang, Y.-M. RSC Adv. 2012,
2, 560−565. (d) Shen, K.; Han, X.; Xia, G.; Lu, X. Org. Chem. Front.
2015, 2, 145−149.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(12) Chen, D.-F.; Han, Z.-Y.; He, Y.-P.; Yu, J.; Gong, L.-Z. Angew.
Chem., Int. Ed. 2012, 51, 12307−12310.
(13) (a) Meyer, K. H.; Schuster, K. Ber. Dtsch. Chem. Ges. B 1922,
55, 819−823. (b) Ramasamy, M.; Lin, H.-C.; Kuo, S.-C.; Hsieh, M.-T.
Synlett 2019, 30, 356−360.
The authors are grateful for the financial support from Major
National Science and Technology Projects (2017ZX07-
402003). We also thank the Natural Science Foundation of
Tianjin (No. 16JCYBJC20100) and Tianjin University for
support of this research.
(14) (a) Datta, S.; Odedra, A.; Liu, R.-S. J. Am. Chem. Soc. 2005,
127, 11606−11607. (b) Ishikawa, T.; Manabe, S.; Aikawa, S.; Kudo,
T.; Saito, S. Org. Lett. 2004, 6, 2361−2364. (c) Sakata, K.;
Nishibayashi, Y. Catal. Sci. Technol. 2018, 8, 12−25. (d) Zhu, Y.;
Sun, L.; Lu, P.; Wang, Y. ACS Catal. 2014, 4, 1911−1925. (e) Han,
Y.-P.; Li, X.-S.; Zhu, X.-Y.; Sun, Z.; Li, M.; Wang, Y.-Z.; Liang, Y.-M.
Adv. Synth. Catal. 2018, 360, 870−874. (f) Han, Y.-P.; Li, X.-S.; Sun,
Z.; Zhu, X.-Y.; Li, M.; Song, X.-R.; Liang, Y.-M. Adv. Synth. Catal.
2017, 359, 2735−2740.
(15) (a) Bolte, Y.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc.
2010, 132, 7294−7296. (b) Sandelier, M. J.; DeShong, P. Org. Lett.
2007, 9, 3209−3212. See SI for other possible reaction pathways.
(16) (a) Yeh, M.-C. P.; Liang, C.-J.; Huang, T.-L.; Hsu, H.-J.; Tsau,
Y.-S. J. Org. Chem. 2013, 78, 5521−5529. (b) Braun, M.-G.; Katcher,
M. H.; Doyle, A. G. Chem. Sci. 2013, 4, 1216−1220.
REFERENCES
■
(1) (a) Prajapati, S. M.; Patel, K. D.; Vekariya, R. H.; Panchal, S. N.;
Patel, H. D. RSC Adv. 2014, 4, 24463−24476. (b) Ma, D.; Xia, C.;
Jiang, J.; Zhang, J. Org. Lett. 2001, 3, 2189−2191. (c) Ng, P. Y.;
Masse, C. E.; Shaw, J. T. Org. Lett. 2006, 8, 3999−4002.
(2) (a) Haibach, M. C.; Seidel, D. Angew. Chem., Int. Ed. 2014, 53,
5010−5036. (b) Wang, L.; Xiao, J. Adv. Synth. Catal. 2014, 356,
1137−1171.
(3) (a) Kwon, S. J.; Kim, D. Y. Chem. Rec. 2016, 16, 1191−1203.
(b) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett. 2010,
12, 1732−1735. (c) Mori, K.; Sueoka, S.; Akiyama, T. J. J. Am. Chem.
Soc. 2011, 133, 2424−2426. (d) Mori, K.; Isogai, R.; Kamei, Y.;
Yamanaka, M.; Akiyama, T. J. J. Am. Chem. Soc. 2018, 140, 6203−
6207. (e) Jiao, Z.-W.; Zhang, S.-Y.; He, C.; Tu, Y.-Q.; Wang, S.-H.;
Zhang, F.-M.; Zhang, Y.-Q.; Li, H. Angew. Chem., Int. Ed. 2012, 51,
8811−8815.
(4) (a) Murarka, S.; Deb, I.; Zhang, C.; Seidel, D. J. Am. Chem. Soc.
2009, 131, 13226−13227. (b) Briones, J. F.; Basarab, G. S. Chem.
Commun. 2016, 52, 8541−8544. (c) Mori, K.; Ehara, K.; Kurihara, K.;
Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166−6169. (d) Mori, K.;
D
Org. Lett. XXXX, XXX, XXX−XXX