A.S. Ramos et al. / Tetrahedron Letters 52 (2011) 6127–6129
6129
Table 2
11. Ribeiro, J. B.; Ramos, M. C. K. V.; Aquino Neto, F. R.; Leite, S. G. F.; Antunes, O. A.
C. Catal. Commun. 2005, 6, 131–133.
Bioreduction of ethyl 3-oxohexanoate (5 g/L) to ethyl (R)-3-hydroxyhexanoate by
immobilized cells. Incubation: 30° C, 150 rpm, 24 h
12. Microorganisms, media, growth conditions, and biotransformation with free
cells. Saccharomyces cerevisiae, Hansenula sp., Geotrichum candidum,
Kluyveromyces marxianus, Rhodotorula rubra, Aspergillus niger, and
Trichoderma harzianum belong to the collection of the ‘Departamento de
Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de
Janeiro (Cidade Universitária, CT Bloco E, Rio de Janeiro, Brazil, e-mail
selma@eq.ufrj.br)’ and are freely available upon request. Cells were allowed
to grow for 48 h, under 150 rpm at 30 °C in a medium containing 1% glucose,
0.5% yeast extract, 0.5% peptone, 0.1% (NH4)2SO4, and 0.1% MgSO4ꢁ7H2O. After
that period, they were harvested by centrifugation, re-suspended in water, and
used for the reaction. After centrifugation, the cells (4 g/L, dried weight) were
added to the reduction medium containing: glucose (5%), MgCl2 (0.1%) in a
final volume of 100 mL. After 30 min of addition of the microorganisms, the
substrate (0.5 g diluted in 1 mL of ethanol 96%) was added to the medium. The
reaction was carried out in 500 mL cotton-plugged Erlenmeyer flasks for 24 h
at 30 °C and 150 rpm. After 24 h, the medium was centrifuged again to
separate the cells and the liquid phase was extracted with ethyl acetate. The
organic phase was dried (anhydrous Na2SO4), filtered, and concentrated under
vacuum. Conversions and enantiomeric excesses were determined by (chiral)
gas chromatography (GC), on column Beta Dex325 (30 m ꢀ 0.25 mm ꢀ
Microorganism
First cycle
Second cycle (after 12 d)
Conversiona (%)
ee (%)
Conversiona (%)
ee (%)
K. marxianus
Hansenula sp.
R. rubra
>99
>99
96.5
>99
75.1
80.6
>99
>99
61.1
>99
60.8
80.5
a
Determined by GC analysis.
whether substrate concentration could influence catalytic activity,
the cells of K. marxianus were immobilized again and used in the
reduction of ethyl 3-oxohexanoate at substrate concentrations of
7.5 g/L and 10 g/L. This biocatalyst also showed the same conver-
sion level (>99%) and enantioselectivity (>99% ee) observed before.
In conclusion, the filamentous fungus A. niger and the yeast K.
marxianus led to the high conversion of ethyl 3-oxohexanoate to
ethyl (R)-3-hydroxyhexanoate (>99%) with extremely high
enantioselectivity (>99% ee). To our knowledge, this is the first
Letter on the use of these two microorganisms in the reduction of
ethyl 3-oxohexanoate. The high conversion level, high enantio-
meric excess, tolerance to substrate and the possibility of immobi-
lization, and reuse make K. marxianus a promising biocatalyst for
industrial applications.
0.25 lm), at 90 °C (23 min). The elution order was: ethyl (S)-3-hydroxy-
hexanoate (tR = 18.8 min) followed by ethyl (R)-3-hydroxyhexanoate
(tR = 19.3 min). Substrate was eluted at 15.3 min. The reaction product was
characterized by nuclear magnetic resonance (NMR) and mass spectroscopy.
13.
½
a 2D5
ꢂ
–30.8° (c 1 g/100 mL, CHCl3); literature: ½a D25
–26.9° (c 1.14 g/100 mL,
ꢂ
CHCl3). Optical rotations were measured from CHCl3 solutions using a JASCO
DIP-370 polarimeter at the sodium
D line (589 nm) operating at room
temperature and compared to literature: Roche, C.; Desroy, N.; Haddad, M.;
Phansavath, P.; Genet, J. P. Org. Lett. 2008, 10, 3911–3914.
14. (a) Ema, T.; Moriya, H.; Kofukuda, T.; Ishida, T.; Maehara, K.; Utaka, M.; Sakai, T.
J. Org. Chem. 2001, 66, 8682–8684; (b) Ishihara, K.; Yamaguchi, H.; Nakajima, N.
J. Mol. Catal. B 2003, 23, 171–189.
15. Rodríguez, S.; Kayser, M. M.; Stewart, J. D. J. Am. Chem. Soc. 2001, 123, 1547–
1555.
Acknowledgments
16. Kaluzna, I. A.; Matsuda, T.; Sewell, A. K.; Stewart, J. D. J. Am. Chem. Soc. 2004,
126, 12827–12832.
17. Zhu, D.; Mukherjee, C.; Rozzell, J. D.; Kambourakis, S.; Hua, L. Tetrahedron 2006,
62, 901–905.
18. Yang, W.; Xu, J. H.; Xie, Y.; Xu, Y.; Zhao, G.; Lin, G. Q. Tetrahedron: Asymmetry
2006, 17, 1769–1774.
Financial support from CAPES and CNPq-BRAZIL is acknowl-
edged. Analytical support from DQO and DQI-IQ-UFRJ is also
acknowledged.
19. North, M. Tetrahedron Lett. 1996, 37, 1699–1702.
20. Rotthaus, O.; Krüger, D.; Demuth, M.; Schaffner, K. Tetrahedron 1997, 53, 935–
938.
Supplementary data
21. Dahl, A. C.; Fjeldberg, M.; Madsen, J. Ø. Tetrahedron: Asymmetry 1999, 10, 551–
559.
22. Buisson, D.; Azerad, R.; Sanner, C.; Larchevêque, M. Tetrahedron: Asymmetry
1991, 2, 987–988.
Supplementary data associated with this article can be found, in
23. Immobilization of cells (Kluyveromyces marxianus, Rhodotorula rubra, and
Hansenula sp.) in calcium alginate and biotransformation. Cells grown during
48 h in the medium described before12 were centrifuged and 0.4 g (dry weight)
was re-suspended in 3 mL of distilled water to obtain a cell-suspension. A 1.5%
sodium alginate aqueous solution (20 mL) was added and this mixture (cell-
References and notes
1. (a) Mori, K. Tetrahedron 1989, 45, 3233–3298; (b) Sheldon, R. A.
Chirotechnology; Dekker: New York, 1993.
2. Ribeiro, J. B.; Ramos, M. C. K. V.; Aquino Neto, F. R.; Leite, S. G. F.; Antunes, O. A.
suspension sodium alginate aqueous solution) was dropped into
a CaCl2
C. J. Mol. Catal. B 2003, 24–25, 121–124.
aqueous solution (0.1 M) to form calcium alginate spheres. Spheres were
filtered, washed with distilled water, and added to the medium containing:
glucose (5%), MgCl2 (0.1%), substrate (0.5 g diluted in 1 mL of ethanol 96%) in a
final volume of 100 mL. Reduction was carried out in 500 mL cotton-plugged
Erlenmeyer flasks, at 30 °C, 150 rpm during 24 h. After that period, medium
was filtered to separate the biocatalyst and the liquid phase was treated as
described above.12 Immobilized cells were washed with distilled water and
maintained at 4 °C in a CaCl2 aqueous solution (0.1 M) for 12 days. Thus, the
immobilized cells were incubated in growth medium12 under 150 rpm at 30 °C
for 2 h, washed with distilled water again, and reused under the same
reaction’s conditions.
3. (a) Wright, A. E.; Cook Botelho, J.; Guzma´n, E.; Harmody, D.; Linley, P.;
McCarthy, P. J.; Pitts, T. P.; Pomponi, S. A.; Reed, J. K. J. Nat. Prod. 2007, 70, 412–
416; (b) Paterson, I.; Miller, N. A. Chem. Commun. 2008, 4708–4710; (c)
Guinchard, X.; Roulland, E. Org. Lett. 2009, 11, 4700–4703; (d) Custar, D. W.;
Zabawa, T. P.; Hines, J.; Crews, C. M.; Scheidt, K. A. J. Am. Chem. Soc. 2009, 131,
12406–12414.
4. Nakamura, K.; Yamanaka, R.; Matsuda, T.; Harada, T. Tetrahedron: Asymmetry
2003, 14, 2659–2681.
5. Kataoka, M.; Kita, K.; Wada, M.; Yasohara, Y.; Hasegawa, J.; Shimizu, S. Appl.
Microbiol. Biotechnol. 2003, 62, 437–445.
6. Yang, Y.; Zhu, D.; Piegat, T. J.; Hua, L. Tetrahedron: Asymmetry 2007, 18, 1799–
1803.
7. Houng, J. Y.; Liao, J. H.; Wu, J. Y.; Shen, S. C.; Hsu, H. F. Process Biochem. 2007, 42,
1–7.
8. Ramos, A. S.; Ribeiro, J. B.; Vazquez, L.; Fiaux, S. B.; Leite, S. G. F.; Ramos, M. C. K.
V.; Aquino Neto, F. R.; Antunes, O. A. C. Tetrahedron Lett. 2009, 50, 7362–7364.
9. Ribeiro, J. B.; Ramos, A. S.; Fiaux, S. B.; Leite, S. G. F.; Ramos, M. C. K. V.; Aquino
Neto, F. R.; Antunes, O. A. C. Tetrahedron: Asymmetry 2009, 20, 2263–2266.
10. Ramos, A. S.; Ribeiro, J. B.; Vazquez, L.; Fiaux, S. B.; Leite, S. G. F.; Cruz, R. A.;
Ramos, M. C. K. V.; Aquino Neto, F. R.; Antunes, O. A. C. Tetrahedron: Asymmetry
2009, 20, 559–561.
24. Milagre, C. D. F.; Milagre, H. M. S.; Moran, P. J. S.; Rodrigues, J. A. R. J. Mol. Catal.
B: Enzyme 2009, 56, 55–60.
25. Buque, E. M.; Chin-Joe, I.; Straathof, A. J. J.; Jongejan, J. A.; Heijnen, J. J. Enzyme
Microb. Technol. 2002, 31, 656–664.
26. Gröger, H.; Hummel, W.; Rollmann, C.; Chamouleau, F.; Hüsken, H.; Werner,
H.; Wunderlich, C.; Abokitse, K.; Drauz, K.; Buchholz, S. Tetrahedron 2004, 60,
633–640.
27. Yang, Z. H.; Yao, S. J.; Guan, Y. X. Ind. Eng. Chem. Res. 2005, 44, 5411–5416.
28. Fatima, Y.; Kansal, H.; Soni, P.; Banerjee, U. C. Process Biochem. 2007, 42, 1412–
1418.