330
G. Bringmann et al. / Phytochemistry 52 (1999) 321±332
DE244+9.0, DE273 18.6, DE302 3.7 (EtOH, c 0.03). IR
nmax cm 1: 3380 (O±H), 2940, 2920, 2820 (C±H), 1570,
1490 (C1C), 1270, 1260, 1070 (C±O). 1H NMR
(200 MHz, CDCl3): d 1.42 (3H, d, J = 6.1 Hz, Me-3),
2.22 (3H, s, Me-2'), 2.73 (3H, s, Me-1), 2.75 (1H, dd,
Jgem=16.5 Hz, Jax not measurable due to partial over-
lap by signal of Me-2', Hax-4), 2.97 (1H, dd,
Jgem=16.5 Hz, Jeq=5.2 Hz, Heq-4), 3.13 (1H, s, OMe-
8), 3.91 (1H, mc, H-3), 3.97 (3H, s, OMe-5'), 4.00 (3H,
s, OMe-4'), 6.80 (1H, s, H-3'), 6.81 (1H, s, H-5), 6.82
(1H, dd, Jortho=8.4 Hz, Jmeta=1.3 Hz, H-6'), 6.91 (1H,
dd, Jortho=8.4 Hz, Jmeta=1.3 Hz, H-8'), 7.15 (1H,
pseudo-t, Jortho=8.2 Hz, H-7'). 13C NMR (150 MHz,
CDCl3): d 17.49 (Me-3), 20.74 (Me-2'), 23.53 (Me-1),
34.35 (C-4), 48.25 (C-3), 56.36 (OMe-4'), 56.48 (OMe-
5'), 60.36 (OMe-8), 106.35 (C-6'), 108.83 (C-3'), 111.56
(C-5), 111.96 (C-9), 116.64 (C-10'), 117.19 (C-8'),
117.87 (C-1'), 118.81 (C-7), 128.06 (C-7'), 136.16 (C-
9'), 138.03 (C-2'), 140.61 (C-10), 157.94 (C-5'), 158.35
(C-4'), 162.99 (C-8), 163.40 (C-6), 174.18 (C-1). EIMS
m/z (rel. int.): 405 [M]+ (100), 390 [M Me]+ (91), 375
[M OMe+H]+ (11). HRMS m/z 405.194 [M]+,
(C25H27NO4 requires: 405.194).
3), 22.21 (Me-1), 37.67 (C-4), 49.16 (C-3), 50.49 (C-1),
56.33 (OMe-4'), 56.44 (OMe-5'), 59.71 (OMe-8),
105.82 (C-6'), 109.15 (C-3'), 110.38 (C-5), 116.39 (C-
10'), 117.56 (C-7), 117.74 (C-8'), 119.39 (C-1), 122.80
(C-9), 127.52 (C-10), 127.71 (C-7'), 136.30 (C-9'),
138.43 (C-2'), 152.61 (C-6), 156.55 (C-8), 157.54 (C-
4'), 157.64 (C-5'). EIMS m/z (rel. int.): 407 [M]+ (8),
392 [M Me]+ (100), 377 [M OMe+H]+ (12).
HRMS m/z 392.186 [M±Me]+, (C24H26NO4 requires:
392.186).
3.9. Oxidative degradation of 4, 5, 6 and 7
The degradation, the derivatization of the amino
acids, and the subsequent GC-MSD analysis were car-
ried out as described previously (Bringmann et al.,
1996).
3.10. Preparation of ancistrocladisine (10) from 1,2-
didehydro-ancistrobertsonine (6)
To a soln of 2.4 mg (6.0 mmol) of 1,2-didehydroan-
cistrobertsonine (6) in MeOH±H2O (9:1) freshly prepd
CH2N2 in Et2O (de Boer & Baker, 1963) was added
until the generation of N2 ceased and the resulting
mixt. remained yellow (Organikum, 1988). After addn
of CH2N2 the mixt. was left to stand 10 min at room
temp. to complete the reaction. After that time the sol-
vent was removed under reduced pressure to yield
2.5 mg (6.0 mmol, quantitative yield) ancistrocladisine
(10) after recrystallization from CH2Cl2. Mp 1768;
(Bringmann & Reuscher, 1989): 1788 (synthetic ancis-
trocladisine); (Govindachari et al., 1972): 178±1808
(natural product from A. heyneanus ). [a]2D5+68
(CHCl3; c 0.04);. (Bringmann & Reuscher, 1989)
:+7.88. CD: DE200 13.2, DE215 45.0, DE230+18.0,
DE248+10.9, DE262+9.0, DE312 2.7 (EtOH, c 0.05).
3.8. Isolation of ancistrobertsonine D (7)
From HSCCC fr. 6 ancistrobertsonine D was iso-
lated by prep. TLC using i-PrOH±MeOH (19:1) as elu-
ent. The crude alkaloid obtained was further puri®ed
by prep. HPLC with MeOH±H2O (4:6)
5 min,
(4:6 4 6:4) in 15 min, (6:4) 5 min, (6:4 4 4:6) in 1 min,
(4:6) 10 min. Attempts to recrystallize the compound
from dierent solvents being not succesful, the alkaloid
was solved in MeOH±H2O. After the removal of
MeOH under reduced pressure, the aq. soln was lyo-
philized, yielding 8 mg of an amorphous, yellow pow-
der. Mp 133±13483 [a ]D25+828 (CHCl3; c 0.51); (Data
1
Chromatographic behaviour as well as IR, H NMR
and MS data were identical to those of natural and
for `ancistrine' from A. ealaensis (Foucher et al., 1975):
20
578
Mp
230±231.
[a]
358).
CD:
DE200+32.5,
synthetic
ancistrocladisine
obtained
earlier
DE213 86.8, DE239+68.8, DE282 32.0, DE305+8.7
(EtOH, c 0.01). IR nmax cm 1: 3400 (O±H), 2950,
2920, 2840 (C±H), 1600, 1585, 1570 (C1C), 1260,
(Govindachari et al., 1972; Bringmann & Reuscher,
1989). 13C NMR (100 MHz, CDCl3): d 21.00 (Me-3),
23.70 (Me-2'), 29.70 (Me-1), 34.91 (C-4), 56.29 (OMe-
6), 56.29 (OMe-4'), 56.38 (OMe-5'), 60.44 (OMe-8),
62.99 (C-3), 96.32 (C-5), 105.47 (C-6'), 106.44 (C-3'),
108.57 (C-7), 113.81 (C-9), 116.15 (C-10'), 117.78 (C-
1'), 118.39 (C-8'), 129.70 (C-7'), 133.00 (C-2'), 135.95
(C-2'), 144.50 (C-10), 157.14 (C-5'), 157.50 (C-4'),
157.86 (C-8), 167.54 (C-6), 178.10 (C-1).
1
1070 (C±O). H NMR (200 MHz, CDCl3): d 1.28 (3H,
d, J = 6.3 Hz, Me-3), 1.51 (3H, d, J = 6.4 Hz, Me-1),
2.22 (3H, s, Me-2'), 2.54 (1H, dd, Jgem=16.0 Hz,
Jax=10.8 Hz, Hax-4), 2.75 (1H, dd, Jgem=16.0 Hz,
Jeq=3.7 Hz, Heq-4), 3.01 (1H, mc, H-3), 3.07 (1H, s,
OMe-8), 3.98 (3H, s, OMe-5'), 4.02 (3H, s, OMe-4'),
4.31 (1H, q, J = 6.4 Hz, H-1), 6.58 (1H, s, H-5), 6.82
(1H, dd, Jortho=7.8 Hz, Jmeta=1.0 Hz, H-6'), 6.86 (1H,
s, H-3'), 7.06 (1H, dd, Jortho=8.4, Jmeta=1.0 Hz, H-
8'), 7.29 (1H, pseudo-t, Jortho=7.9 Hz, H-7'). 13C
NMR (150 MHz, CDCl3): d 20.53 (Me-2'), 20.86 (Me-
3.11. Reduction of ancistrocladisine (10) (Bringmann et
al., 1986)
Ancistrocladisine (60 mg, 0.14 mmol), AlMe3 (76 mg,
2.1 mmol solved in 1.1 ml n-hexane) and LiAlH4
(40 mg, 2.1 mmol) were added to 8.0 ml of cold
3 `Melting point' of the amorphous powder after lyophilization.