The further chlorinated TiO surface could be fully chlori-
nated with CCl to form TiCl . Since the boiling point of TiCl
4
4
5
6
J. J. Kaufman, W. S. Koski, S. Roszak and K. Balasubramanian,
Chem. Phys., 1996, 204, 233.
A. H. Gilani, K. H. Janbaz and B. H. Shah, Pharmacol. Res.,
4
4
was lower than the temperature the reactor was heated to, the
formation of TiCl resulted in the weight loss of the reactor,
and oxide surface regeneration for further adsorption. The
smaller sized nanometer TiO sample was more reactive than
1
998, 37, 31.
J. V. Michael and S. S. Kumaran, Combust. Sci. Technol., 1998,
34, 31.
4
1
2
7
8
J. Stark and J. Rabani, J. Phys. Chem. B, 1999, 103, 8524.
S. L. Huang and L. D. Pfefferle, Environ. Sci. Technol., 1989,
the larger sized sample, possibly because first, the anatase/
rutile ratio was different for those two samples that can
account for variation in activities; second, the difference in
apparent densities of powders resulted in variation of contact
2
3, 1085.
9
0
1
2
E. A. Chandross and R. D. Miller, Chem. Rev., 1999, 99, 1641.
C. Suryanarayana, Int. Mater. Rev., 1995, 40, 41.
A. Henglein, Chem. Rev., 1989, 89, 1861.
E. Lucas, S. Decker, A. Khaleel, A. Seitz, S. Fultz, A. Ponce,
W. F. Li, C. Carnes and K. J. Klabunde, Chem. Eur. J., 2001,
7, 2505.
1
1
1
times and should influence of the degree of CCl
further, the concentration of surface OH groups should be dif-
ferent for Ti-650 and Ti-800. The partially chlorinated TiO
derived from 40 nm TiO also could be more reactive so that
the exchange of chlorine atoms with oxygen atoms of oxygen
gas in the carrier gas was faster. Therefore, the 40 nm TiO
was regenerated more rapidly than the 80 nm TiO . Hence,
4
conversion;
2
1
3
4
S. Krishnamoorthy, J. A. Rivas and M. D. Amiridis, J. Catal.,
2
2
000, 193, 264.
S. C. Petrosius, R. S. Drago, V. Young and G. C. Grunewald,
1
2
J. Am. Chem. Soc., 1993, 115, 6131.
2
15 E. J. Shin and M. A. Keane, Appl. Catal. B, 1998, 18, 241.
16 G. Sinquin, C. Petit, J. P. Hindermann and A. Kiennemann,
Catal. Today, 2001, 70, 183.
2
the weight loss of the 40 nm TiO was lower than the 80 nm
TiO . Similarly, the partially chlorinated TiO derived from
2
2
1
1
1
7
8
9
R. Schneider, D. Kiessling and G. Wendt, Appl. Catal. B, 2000,
8, 187.
Y. X. Li, H. Li and K. J. Klabunde, Environ. Sci. Technol., 1994,
8, 1248.
the 40 nm TiO
2
at higher temperature could be more reactive
2
so that the exchange of chlorine atoms with oxygen atoms of
oxygen gas in the carrier gas was faster. TiO was regenerated
more rapidly at higher temperature. Therefore, the weight loss
of nanometer TiO
lower temperature.
In conclusion, nanometer TiO
method could have a remarkable potential to remove chlori-
nated hydrocarbons in the environment. The smaller 40 nm
TiO2 sample adsorbed and decomposed more carbon tetra-
2
2
P. D. Hooker and K. J. Klabunde, Environ. Sci. Technol., 1994,
28, 1243.
20 B. M. Weckhuysen, G. Mestl, M. P. Rosynek, T. R. Krawietz,
2
was less at higher temperature than at
J. F. Haw and J. H. Lunsford, J. Phys. Chem. B, 1998, 102, 3773.
B. M. Weckhuysen, M. P. Rosynek and J. H. Lunsford, Phys.
Chem. Chem. Phys., 1999, 1, 3157.
P. Van der Avert and B. M. Weckhuysen, Angew. Chem., Int. Ed.,
2002, 41, 4730.
2
synthesized by the sol–gel
2
1
2
2
chloride than the larger 80 nm TiO
of TiCl made the interaction surface renew so that CCl could
2
sample. The formation
23 B. M. Weckhuysen, Phys. Chem. Chem. Phys., 2003, 5, 4531.
24 O. B. Koper, E. A. Wovchko, J. A. Glass, J. T. Yates and K. J.
Klabunde, Langmuir, 1995, 11, 2054.
4
4
further interact with the bulk of the particles. TiO was regen-
erated through the exchange of chlorine with oxygen in the
carrier gas so that large quantities of CCl would be decom-
2
2
5
K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S.
Decker, Y. Jiang, I. Lagadic and D. J. Zhang, J. Phys. Chem.,
4
1
996, 100, 12 142.
posed over nanometer TiO2 in the presence of oxygen. A
mechanism has been proposed for the destructive adsorption
26
O. Koper, I. Lagadic and K. J. Klabunde, Chem. Mater., 1997,
9, 838.
and desorption of CCl
4
over nanometer TiO
2
.
27 Y. Jiang, S. Decker, C. Mohs and K. J. Klabunde, J. Catal., 1998,
80, 24.
1
2
2
3
3
8
9
0
1
S. P. Decker, J. S. Klabunde, A. Khaleel and K. J. Klabunde,
Environ. Sci. Technol., 2002, 36, 762.
S. Decker, I. Lagadic, K. J. Klabunde, J. Moscovici and A.
Michalowicz, Chem. Mater., 1998, 10, 674.
Y. C. Chien, H. P. Wang and Y. W. Yang, Environ. Sci. Technol.,
Acknowledgements
We gratefully acknowledged financial support of the work by
National Natural Science Foundation of China (No:
2
001, 35, 3259.
C. L. Carnes, J. Stipp and K. J. Klabunde, Langmuir, 2002, 18,
352.
32 A. Khaleel and B. Dellinger, Environ. Sci. Technol., 2002, 36,
620.
20075014), National Science and Technology Committee of
China (No: GN-99-4), and the Doctoral Research Foundation
of Chinese Education Ministry (No. 2000000303).
1
1
3
3
Standard Methods for the Examination of Water and Waste-
water, American Public Health Association, Washington, DC,
References
1
989, pp. 4–51.
1
2
R. M. Lago, M. L. H. Green, S. C. Tsang and M. Odlyha, Appl.
Catal. B, 1996, 8, 107.
34 Beijing Chemial Reagent Corporation, Catalog of Chemical
Reagents, 1999.
35 J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben,
Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer
Corp., Eden Prairie, MN, 1992.
36 P. Babelon, A. S. Dequiedt, H. Mostefa-Sba, S. Bourgeois, P.
Sibillot and M. Sacilotti, Thin Solid Films, 1998, 322, 63.
37 G. H. Liu, Y. F. Zhu, X. R. Zhang and B. Q. Xu, Anal. Chem.,
2002, 74, 6279.
R. G. Prinn, R. F. Weiss, P. J. Fraser, P. G. Simmonds, D. M.
Cunnold, F. N. Alyea, S. O’Doherty, P. Salameh, B. R. Miller,
J. Huang, R. H. J. Wang, D. E. Hartley, C. Harth, L. P. Steele,
G. Sturrock, P. M. Midgley and A. McCulloch, J. Geophys.
Res., 2000, 105, 17 751.
3
S. N. Pentyal, P. J. S. Vig, B. S. Sekhon and D. Desaiah, Cell.
Signall., 1994, 6, 561.
T h i s j o u r n a l i s Q T h e O w n e r S o c i e t i e s 2 0 0 4
P h y s . C h e m . C h e m . P h y s . , 2 0 0 4 , 6 , 9 8 5 – 9 9 1
991