Organometallics
Communication
isoelectronic (PNP)Fe(H)(CO) previously described in the
literature. The formate complex 2 proved competent for FA
(d) Wang, Z.; Lu, S. M.; Li, J.; Wang, J.; Li, C. Chem. - Eur. J. 2015, 21,
1
2592−12595. (e) Hull, J. F.; Himeda, Y.; Wang, W.-H.; Hashiguchi,
B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Nat. Chem.
2012, 4, 383−388. (f) Barnard, J. H.; Wang, C.; Berry, N. G.; Xiao, J.
Chem. Sci. 2013, 4, 1234−1244. (g) Oldenhof, S.; de Bruin, B.; Lutz,
M.; Siegler, M. A.; Patureau, F. W.; van der Vlugt, J. I.; Reek, J. N. H.
Chem. - Eur. J. 2013, 19, 11507−11511.
decomposition catalysis. Unlike the catalysis described with the
H
use of (PN P)Fe(O CH)(H)(CO), 2 is active for both
2
dehydration and dehydrogenation of FA. We postulate that
the dehydration pathway is responsible for the low turnover
observed in the catalysis. The addition of Lewis acid to the
reaction mixtures further inhibited catalysis. Attempts to
decarboxylate OA were unsuccessful. This preliminary report
of manganese-mediated FA decomposition catalysis shows
pressure generation too low for our requirements, as well as
generating CO, which makes this particular compound
unsuitable for fuel cell work, but represents the first observation
that manganese can decompose formic acid into H and CO .
(
5) (a) Boddien, A.; Loges, B.; Gar
Junge, H.; Ludwig, R.; Beller, M. J. Am. Chem. Soc. 2010, 132, 8924−
8934. (b) Boddien, A.; Mellmann, D.; Gartner, F.; Jackstell, R.; Junge,
̈
tner, F.; Torborg, C.; Fumino, K.;
̈
H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011,
333, 1733−1736.
(6) Zell, T.; Butschke, B.; Ben-David, Y.; Milstein, D. Chem. - Eur. J.
2
(
013, 19, 8068−8072.
7) (a) Mellmann, D.; Barsch, E.; Bauer, M.; Grabow, K.; Boddien,
2
2
A.; Kammer, A.; Sponholz, P.; Bentrup, U.; Jackstell, R.; Junge, H.;
Laurenczy, G.; Ludwig, R.; Beller, M. Chem. - Eur. J. 2014, 20, 13589−
13602. (b) Sponholz, P.; Mellmann, D.; Junge, H.; Beller, M.
ChemSusChem 2013, 6, 1172−1176. (c) Boddien, A.; Gartner, F.;
Jackstell, R.; Junge, H.; Spannenberg, A.; Baumann, W.; Ludwig, R.;
Beller, M. Angew. Chem., Int. Ed. 2010, 49, 8993−8996.
ASSOCIATED CONTENT
Supporting Information
■
*
S
(8) (a) Bertoli, M.; Choualeb, A.; Lough, A. J.; Moore, B.; Spasyuk,
D.; Gusev, D. G. Organometallics 2011, 30, 3479−3482. (b) Alberico,
E.; Sponholz, P.; Cordes, C.; Nielsen, M.; Drexler, H.-J.; Baumann, W.;
Junge, H.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 14162−14166.
(c) Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H. J.; Junge, H.;
Gladiali, S.; Beller, M. Nature 2013, 495, 85−89.
Experimental details, spectra, crystallographic tables, and
Crystallographic data for 1, 2, and 3 (CIF)
(
9) (a) Bielinski, E. A.; Fo
Hazari, N.; Holthausen, M. C. ACS Catal. 2015, 5, 2404−2415.
b) Bielinski, E. A.; Lagaditis, P. O.; Zhang, Y.; Mercado, B. Q.;
̈
rster, M.; Zhang, Y.; Bernskoetter, W. H.;
AUTHOR INFORMATION
Corresponding Author
■
(
*
Wurtele, C.; Bernskoetter, W. H.; Hazari, N.; Schneider, S. J. Am.
Chem. Soc. 2014, 136, 10234−10237. (c) Koehne, I.; Schmeier, T. J.;
Bielinski, E. A.; Pan, C. J.; Lagaditis, P. O.; Bernskoetter, W. H.;
Takase, M. K.; Wurtele, C.; Hazari, N.; Schneider, S. Inorg. Chem.
Notes
The authors declare no competing financial interest.
2
̈
014, 53, 2133−2143. (d) Chakraborty, S.; Lagaditis, P. O.; Forster,
ACKNOWLEDGMENTS
■
M.; Bielinski, E. A.; Hazari, N.; Holthausen, M. C.; Jones, W. D.;
Schneider, S. ACS Catal. 2014, 4, 3994−4003.
A.M.T. acknowledges a Director’s funded postdoctoral fellow-
ship from Los Alamos National Laboratory for support. We
also wish to acknowledge LANL Science Campaign 5 for partial
support of this research.
(
11) (a) Radosevich, A. T.; Melnick, J. G.; Stoian, S. A.; Bacciu, D.;
Chen, C.-H.; Foxman, B. M.; Ozerov, O. V.; Nocera, D. G. Inorg.
Chem. 2009, 48, 9214−9221. (b) Bacciu, D.; Chen, C. H.;
Surawatanawong, P.; Foxman, B. M.; Ozerov, O. V. Inorg. Chem.
REFERENCES
■
(
1) (a) Joo, F. ChemSusChem 2008, 1, 805−808. (b) Johnson, T. C.;
2
(
010, 49, 5328−5334.
12) Friedrich, A.; Drees, M.; Kass
Inorg. Chem. 2010, 49, 5482−5494.
13) (a) Tanner, A.; Bornemann, S. J. Bacteriol. 2000, 182, 5271−
273. (b) Tanner, A.; Bowater, L.; Fairhurst, S. A.; Bornemann, S. J.
Morris, D. J.; Wills, M. Chem. Soc. Rev. 2010, 39, 81−88. (c) Loges, B.;
̈
, M.; Herdtweck, E.; Schneider, S.
Boddien, A.; Gar
02−914.
2) (a) Laine, R. M.; Rinker, R. G.; Ford, P. C. J. Am. Chem. Soc.
977, 99, 252−253. (b) Gao, Y.; Kuncheria, J.; Yap, G. P. A.;
̈
tner, F.; Junge, H.; Beller, M. Top. Catal. 2010, 53,
9
(
1
(
5
Biol. Chem. 2001, 276, 43627−43627. (c) Anand, R.; Dorrestein, P. C.;
Puddephatt, R. J. Chem. Commun. 1998, 2365−2366. (c) Gao, Y.;
Kuncheria, J. K.; Jenkins, H. A.; Puddephatt, R. J.; Yap, G. P. A. J.
Chem. Soc., Dalton Trans. 2000, 3212−3217. (d) Man, M. L.; Zhou, Z.;
Ng, S. M.; Lau, C. P. Dalton Trans. 2003, 3727−3735. (e) Loges, B.;
Boddien, A.; Junge, H.; Beller, M. Angew. Chem., Int. Ed. 2008, 47,
Kinsland, C.; Begley, T. P.; Ealick, S. E. Biochemistry 2002, 41, 7659−
7
669. (d) Just, V. J.; Stevenson, C. E.; Bowater, L.; Tanner, A.;
Lawson, D. M.; Bornemann, S. J. Biol. Chem. 2004, 279, 19867−
9874.
14) Bianchi, M.; Menchi, G.; Francalanci, F.; Piacenti, F.; Matteoli,
U.; Frediani, P.; Botteghi, C. J. Organomet. Chem. 1980, 188, 109−119.
15) Zhang, Y.; MacIntosh, A. D.; Wong, J. L.; Bielinski, E. A.;
1
(
3
962−3965. (f) Fellay, C.; Dyson, P. J.; Laurenczy, G. Angew. Chem.,
Int. Ed. 2008, 47, 3966−3968. (g) Fellay, C.; Yan, N.; Dyson, P. J.;
Laurenczy, G. Chem. - Eur. J. 2009, 15, 3752−3760. (h) Gan, W.;
Dyson, P. J.; Laurenczy, G. React. Kinet. Catal. Lett. 2009, 89, 205−
(
Williard, P. G.; Mercado, B. Q.; Hazari, N.; Bernskoetter, W. H. Chem.
Sci. 2015, 6, 4291−4299.
(
2
2
13. (i) Morris, D. J.; Clarkson, G. J.; Wills, M. Organometallics 2009,
8, 4133−4140. (j) Mellone, I.; Peruzzini, M.; Rosi, L.; Mellmann, D.;
16) DeRieux, W. S.; Wong, A.; Schrodi, Y. J. Organomet. Chem.
2
014, 772−773, 60−67.
Junge, H.; Beller, M.; Gonsalvi, L. Dalton Trans. 2013, 42, 2495−2501.
(
3) (a) Strauss, S. H.; Whitmire, K. H.; Shriver, D. F. J. Organomet.
Chem. 1979, 174, C59−C62. (b) King, R. B.; Bhattacharyya, N. K.
Inorg. Chim. Acta 1995, 237, 65−69. (c) Fukuzumi, S.; Kobayashi, T.;
Suenobu, T. ChemSusChem 2008, 1, 827−834. (d) Fukuzumi, S.;
Kobayashi, T.; Suenobu, T. J. Am. Chem. Soc. 2010, 132, 1496−1497.
(
4) (a) Himeda, Y. Green Chem. 2009, 11, 2018−2022. (b) Manaka,
Y.; Wang, W.-H.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita,
E.; Himeda, Y. Catal. Sci. Technol. 2014, 4, 34−37. (c) Matsunami, A.;
Kayaki, Y.; Ikariya, T. Chem. - Eur. J. 2015, 21, 13513−13517.
D
Organometallics XXXX, XXX, XXX−XXX