Please do not adjust margins
RSC Advances
Page 9 of 11
DOI: 10.1039/C6RA14447K
Journal Name
ARTICLE
46
Inevitably, the co-existence of Cu0 and Cu+ can promote the
6
7
S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk,
Angew. Chem., Int. Ed., 2013, 52, 7372-7408.
hydrogenation of CO2 to CO, methanol and small amount of CH4.
Wang’s work47 demonstrated the conversion of CO2 rapidly
increased with an increase in the Cu+/(Cu0+Cu+) value and reached
the maximum when Cu+/(Cu0 + Cu+) is 1.00, which showed that the
Cu+ species was the active component in the Cu/SiO2-AE
nanocatalyst for activation and conversion of CO2. Moderate
higher reaction temperature is conducive to the methanol
production from direct hydrogenation of DMC and indirect
hydrogenation of CO2. The side reactions would be promoted
which resulted in more gas products if the reaction temperature
was too high. However, methanol produced from CO2 and DMC
was inhibited at lower temperature. Both of these factors will
result in the decline of methanol yield. Hence, a proper reaction
temperature is essential in the gas-solid phase hydrogenation of
DMC.
X. X. Chang, T. Wang, J. L. Gong, Energy Environ. Sci., 2016,
DOI: 10.1039/c6ee00383d.
8
9
Y. Choi, K. Futagami, T. Fujitani, J. Nakamura, Appl. Catal. A.,
2001, 208, 163-167.
M. Kurtz, N. Bauer, H. Wilmer, O. Hinrichsen, R. Becker, S.
Rabe, K. Merz, M. Driess, R. A. Fischer, Catal. Lett, 2004, 92,
49-52.
10 W. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev, 2011, 40,
3703-3727.
11 S. Felix, S. Irek, A. P. Frank, F. Christian. Nat. Chem, 2014, 6,
320-324.
12
M. D. Porosoff, B. H. Yan and J. G. Chen, Energy
Environ. Sci., 2016, 9, 62-73.
13 P. G. Jessop, T. Ikariya, R. Noyori, Chem. Rev, 1995, 95, 259-
272.
4. Conclusions
14 W. Leitner, Angew. Chem. Int. Ed. Engl, 1995, 34, 2207-2221.
15 M. Aresta, A. Dibenedetto, Dalton Trans, 2007, 28, 2975-2992.
16 T. Sakakura, J.C. Choi, H. Yasuda, Chem. Rev, 2007, 107, 2365-
2387.
In summary, for the first time, a facile and highly efficient route
for the indirect synthesis of methanol from CO2 via gas-solid
heterogeneous continuous hydrogenation of DMC, diethyl
carbonate, and di-n-propyl carbonate was demonstrated using
low-cost Cu/SiO2 catalysts prepared by the facile AE method. The
catalysts possessed remarkable stability and efficiency even
though the neat DMC as reactant, which could be ascribed to the
high copper species dispersion and the synergistic effect of Cu0
and Cu+. The Cu0 and Cu+ site densities suggested that Cu+ was the
main active site and primarily responsible for the catalytic
performance in the hydrogenation of DMC to methanol.
Moreover, the yield of methanol was also affected by the reaction
temperature. This indirect synthetic methodology using
inexpensive Cu-based catalysts under mild conditions shows
promising application potential to convert CO2 to methanol in
industry.
17 Z. B. Han, L. C. Rong, J. Wu, L. Zhang, Z. Wang, K. L. Ding,
Angew. Chem. Int. Ed, 2012, 51, 13041-13045.
18 Y. H. Li, K. Junge, M. Beller, ChemCatChem, 2013, 5, 1072-
1074.
19 Z. Zhang, C. Wu, J. Ma, J. Song, H. Fan, J. Liu, Q. Zhu, B. Han.
Green Chemistry, 2015, 17, 1633-1639.
20 E. Balaraman, C. Gunanathan, J. Zhang, L. J. W. Shimon, D.
Milstein, Nat. Chem, 2011, 3, 609-614.
21 C. Lian, F. Ren, Y. Liu, G. Zhao, Y. Ji, H. Rong, W. Jia, L. Ma, H.
Lu, D. Wang, Y. Li, Chem. Commun, 2015, 51, 1252-1254.
22 H. Liu, Z. Huang, Z. Han, K Ding, H. Liu, C. Xia, J. Chen, Green
Chemistry, 2015, 17, 4281-4290.
23 S. H. Kim, S. H. Hong, ACS Catal, 2014, 4, 3630-3636.
24 X. Chen, Y. Y. Cui, C Wen, B. Wang and W. L. Dai, Chem.
Commun., 2015, 51, 13776-13778.
Acknowledge
25 T. Vom Stein, M. Meuresch, D. Limper, M. Schmitz, M.
Hölscher, J. Coetzee, D. J. Cole-Hamilton, J. Klankermayer,
W. Leitner, J. Am. Chem. Soc, 2014, 136, 13217-13225.
26 M. Tamura, T. Kitanaka, Y. Nakagawa, K. Tomishige, ACS Catal.,
2016, 6, 376-380.
We would like to thank financial support by the Major State
Basic Resource Development Program (Grant No. 2012CB224804),
NSFC (Project 21373054, 21173052), the Natural Science
Foundation of Shanghai Science and Technology Committee
(08DZ2270500).
27 C. Wen, F. Q. Li, Y. Y. Cui, W. L. Dai, K. N. Fan. Catal. Today,
2014, 233, 117-126.
Note and References
28 H. Liu, Z. Huang, C. Xia, Y. Jia, J. Chen and H. Liu, ChemCatChem,
2014, 6, 2918-2928.
1
A. Goeppert, M. Czaun, J. P. Jones, G. K. S. Prakash, George A.
Olah, Chem. Soc. Rev., 2014, 43, 7995-8048.
29 C. J. G. Van Der Grift, A. F. H. Wielers, B. P. J. Joghi, J. Van
Beijnum, M. De Boer, M. Versluijs-Helder, J. W. Geus, J. Catal,
1991, 131, 178-189.
2
G. A, Olah, A. Goeppert, G. K. S. Prakash, Beyond Oil and Gas:
The Methanol Economy; Wiley-VCH: Weinheim, Germany,
2009, pp.179-184.
30 G. C. Chinchen, C. M. Hay, H. D. Vandervell, K. C. Waugh, J.
Catal., 1987, 103, 79-86.
3
4
M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E.
Kuhn, Angew. Chem. Int. Ed., 2011, 50, 8510-8537.
F. Studt, F. A. Pedersen, Q. X. Wu, A. D. Jensen, B.
31 E. K. Poels, D. S. Brands, Appl. Catal. A, 2000, 191, 83-96.
32 S. Natesakhawat, J. W. Lekse, J. P. Baltrus, P. R. Ohodnicki, B.
H. Howard, X. Deng, C. Matranga, ACS Catal, 2012, 2, 1667-
1676.
Temel, J. D. Grunwaldt and J. K. Nørskov,J. Catal., 2012,
293, 51-60.
33 A. Y. Yin, C. Wen, W. L. Dai, K. N. Fan, Applied Surface Science,
2011, 257, 5844-5849.
5
M. Aresta, A. Dibenedetto and E. Quaranta, J. Catal.,
2016, DOI: 10.1016/j.jcat.2016.04.003.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins