I. H. Kim et al.
17. Kim K-D, Park EJ, Seo HO, Jeong M-G, Kim YD, Lim DC
(2012) Chem Eng J 200–202:133
for acetaldehyde removal, with almost 100% acetaldehyde
removal rate at 250 °C for 24 h. Regarding CO2 evolution
rate, however, Fe2O3/SiO2 was superior to Fe2O3/Al2O3.
Together with subsequent TPO results, this result implies
that partial oxidation of acetaldehyde and adsorption of reac-
tion intermediates for total oxidation significantly contrib-
ute to acetaldehyde removal by Fe2O3/Al2O3. Conversely,
total oxidation of acetaldehyde to CO2 is more dominant
for Fe2O3/SiO2. In combination with acetaldehyde TPD
results, we suggest that interaction of SiO2 and acetalde-
hyde is weaker than interaction of Al2O3 and acetaldehyde.
Weaker interaction between substrate surface and reactant
facilitates diffusion of reactant molecules to the catalytically
active species, increasing total oxidation rate. For toluene
oxidation experiments using these two different catalysts,
total oxidation of toluene into CO2 was more efficient when
SiO2 was used as a supporting material of Fe2O3 catalyst
than when using Al2O3. This result is in line with that of
acetaldehyde oxidation. Our results show that changes in
substrate structure not only influence metal-support interac-
tion, but also support-reactant interaction, a critical factor
for determining catalytic activity and selectivity.
18. Qian X, Ren M, Yue D, Zhu Y, Han Y, Bian Z, Zhao Y (2017)
Appl Catal B 212:1
19. Selishchev DS, Kolobov NS, Pershin AA, Kozlov DV (2017)
Appl Catal B 200:503
20. Shiraishi F, Maruoka D, Tanoue Y (2017) Sep Purif Technol
175:185
21. Bae S, Kim S, Lee S, Choi W (2014) Catal Today 224:21
22. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015)
Water Res 79:128
23. Liu W-J, Qian T-T, Jiang H (2014) Chem Eng J 236:448
24. Rahim Pouran S, Abdul Raman AA, Wan Daud WMA (2014) J
Clean Prod 64:24
25. Yashnik SA, Denisov SP, Danchenko NM, Ismagilov ZR (2016)
Appl Catal B 185:322
26. Ordóñez S, Bello L, Sastre H, Rosal R, Díez FV (2002) Appl
Catal B 38:139
27. Liotta LF (2010) Appl Catal B 100:403
28. Chen C, Chen F, Zhang L, Pan S, Bian C, Zheng X, Meng X,
Xiao F-S (2015) Chem Commun 51:5936
29. Liotta LF, Ousmane M, Di Carlo G, Pantaleo G, Deganello G,
Boreave A, Giroir-Fendler A (2009) Catal Lett 127:270
30. Knudsen J, Merte LR, Peng G, Vang RT, Resta A, Lægsgaard E,
Andersen JN, Mavrikakis M, Besenbacher F (2010) ACS Nano
4:4380
31. Saqer SM, Kondarides DI, Verykios XE (2011) Appl Catal B
103:275
32. Yen H, Seo Y, Kaliaguine S, Kleitz F (2012) Angew Chem Int
Ed 51:12032
Acknowledgements This research was supported by the Basic Sci-
ence Research Program through the National Research Foundation of
Korea (NRF), funded by the Ministry of Science, ICT, and Future
Planning (2015R1A2A2A01003866). This work was supported by the
research grant of the Korea Basic Science Institute (D37613).
33. Liu Y, Deng J, Xie S, Wang Z, Dai H (2016) Chin J Catal
37:1193
34. Piumetti M, Bensaid S, Fino D, Russo N (2016) Appl Catal B
197:35
35. Si W, Wang Y, Zhao S, Hu F, Li J (2016) Environ Sci Technol
50:4572
36. Leung E, Shimizu A, Barmak K, Farrauto R (2017) Chem Com-
mun 97:42
References
37. Tang H, Wei J, Liu F, Qiao B, Pan X, Li L, Liu J, Wang J, Zhang
T (2016) J Am Chem Soc 138:56
1. Anton A, Ben de Lacy C, Wolfram M, Jochen S, Bogusław B,
Joachim P, Norman R, Terence R (2014) J Breath Res 8:034001
2. Buljubasic F, Buchbauer G (2015) Flavour Fragr J 30:5
3. Huang Y, Ho SS, Lu Y, Niu R, Xu L, Cao J, Lee S (2016) Mol-
ecules 21:56
38. Yang F, Chen MS, Goodman DW (2009) J Phys Chem C 113:254
39. Han SW, Kim DH, Jeong M-G, Park KJ, Kim YD (2016) Chem
Eng J 283:992
40. Jeong MG, Kim IH, Han SW, Kim DH, Kim YD (2016) J Mol
Catal A 414:87
4. Kamal MS, Razzak SA, Hossain MM (2016) Atmos Environ
140:117
41. Kim DH, Kim SY, Han SW, Cho YK, Jeong M-G, Park EJ, Kim
YD (2015) Appl Catal A 495:184
5. Paciência I, Madureira J, Rufo J, Moreira A, Fernandes EdO
(2016) J Toxicol Environ Health 19:47
42. Kim IH, Park EJ, Park CH, Han SW, Seo HO, Kim YD (2017)
Catal Today 295:56
6. Garcia-Hurtado E, Pey J, Borrás E, Sánchez P, Vera T, Carratalá
A, Alastuey A, Querol X, Vallejo VR (2014) Atmos Environ 89:85
7. Mellouki A, Wallington TJ, Chen J (2015) Chem Rev 115:3984
8. Ogunkoya D, Roberts WL, Fang T, Thapaliya N (2015) Fuel
140:541
43. Kim IH, Seo HO, Park EJ, Han SW, Kim YD (2017) Sci Rep
7:40497
44. Solsona B, Garcia T, Sanchis R, Soriano MD, Moreno M, Rodri-
guez-Castellon E, Agouram S, Dejoz A, Nieto JML (2016) Chem
Eng J 290:273
9. Tutak W, Lukács K, Szwaja S, Bereczky Á (2015) Fuel 154:196
10. LoPachin RM, Gavin T (2014) Chem Res Toxicol 27:1081
11. Nikawa T, Naya S-i, Kimura T, Tada H (2015) J Catal 326:9
12. Sun Z, Kong L, Ding X, Du C, Zhao X, Chen J, Fu H, Yang X,
Cheng T (2016) Phys Chem Chem Phys 18:9367
45. Zhu JK, Gao QM (2009) Microporous Mesoporous Mater 124:144
46. Wan HJ, Wu BS, Zhang CH, Xiang HW, Li YW, Xu BF, Yi F
(2007) Chem Commun 8:1538
47. Sun ZK, Sun B, Qiao MH, Wei J, Yue Q, Wang C, Deng YH,
Kaliaguine S, Zhao DY (2012) J Am Chem Soc 134:17653
48. King JS, Wittstock A, Biener J, Kucheyev SO, Wang YM, Bau-
mann TF, Giri SK, Hamza AV, Baeumer M, Bent SF (2008) Nano
Lett 8:2405
13. Tang X, Misztal PK, Nazaroff WW, Goldstein AH (2016) Environ
Sci Technol 50:12686
14. Qu F, Zhu L, Yang K (2009) J Hazard Mater 170:7
15. Pires J, Carvalho A, de Carvalho MB (2001) Microporous
Mesoporous Mater 43:277
49. Bang Y, Park S, Han SJ, Yoo J, Song JH, Choi JH, Kang KH, Song
IK (2016) Appl Catal B 180:179
16. Lillo-Ródenas MA, Fletcher AJ, Thomas KM, Cazorla-Amorós
D, Linares-Solano A (2006) Carbon 44:1455
50. Jiang T, Du S, Jafari T, Zhong W, Sun Y, Song W, Luo Z, Hines
WA, Suib SL (2015) Appl Catal A 502:105
1 3