Preparation and Characterization of Highly Efficient CuFe Mixed Oxides for Total Oxidation of Toluene
Xue et al.
Table II. T50 and T90 volumes and BET results of Cu4Fe-HTs and
Cu4Fe-MOs.
References and Notes
1. P. Papaefthimiou, T. Ioannides, and X. E. Verykios, Appl. Catal. B
Environ. 13, 175 (1997).
Pore
size (nm)
Pore
SSA
T50
(ꢀC)
T90
(ꢀC)
2. M. S. Kamal, S. A. Razzak, and M. M. Hossain, Atmos. Environ.
140, 117 (2016).
Sample
volume (cm2/g)
(m2/g)
3. J. J. Spivey, Ind. Eng. Chem. Res. 26, 2165 (1989).
4. H. Huang, Y. Xu, Q. Feng, and D. Y. C. Leung, Catal. Sci. Technol.
5, 2649 (2015).
5. C. H. Wang, Chemosphere 55, 11 (2004).
6. S. M. Saqer, D. I. Kondarides, and X. E. Verykios, Appl. Catal. B
Environ. 103, 275 (2011).
Cu4Fe-300
Cu4Fe-400
Cu4Fe-500
Cu4Fe-HTs
7ꢆ3
9ꢆ67
13ꢆ49
4ꢆ09
0ꢆ195658
0ꢆ1817
0ꢆ088045
0ꢆ168246
53.613
37.573
13.057
82.348
273
258
256
/
342
294
332
/
7. J. M. Coronado, C. Belver, C. Y. Lee, and V. Augugliaro, Appl.
Catal. B Environ. 29, 327 (2001).
8. M. H. Castaño, R. Molina, and S. Moreno, J. Mol. Catal. A Chem.
398, 358 (2015).
9. K. H. Chuang, Z. S. Liu, C. Y. Lu, and Y. W. Ming, Ind. Eng. Chem.
Res. 48, 4202 (2009).
10. S. Jiang, E. S. Handberg, F. Liu, Y. Liao, H. Wang, Z. Li, and
S. Song, Appl. Catal. B Environ. 160, 716 (2014).
11. Q. Wang, S. Tang, L. Edward, and O. Dermot, Nanoscale 5, 114
(2012).
12. Q. Wang and O. Dermot, Chem. Rev. 112, 4124 (2012).
13. G. Centi, G. Fornasari, C. Gobbi, M. Livi, F. Trifirò, and A. Vaccari,
Catal. Today 73, 287 (2002).
14. Z. Wang, P. Lu, X. Zhang, L. Wang, Q. Li, and Z. Zhang, Rsc Adv.
5, 65 (2015).
15. Q. Wang, Z. Wu, H. Tay, L. Chen, Y. Liu, J. Chang, Z. Zhong,
J. Luo, and A. Borgna, Catal. Today 164, 198 (2011).
16. E. Heracleous, A. F. Lee, K. Wilson, and A. A. Lemonidou, J. Catal.
231, 159 (2005).
17. E. M. Cordi, P. J. O’Neill, and J. L. Falconer, Appl. Catal. B Environ.
14, 23 (1997).
53.613 m2/g, but the T50 and T90 are lower than that of
Cu4Fe-400. This appearance indicates that the SSA of cat-
alysts is not the dominant factor that affects the oxida-
tion performance. The adsorbed oxygen in surface oxygen
species and acid site amount seem to be the determinant
factor for Fe-supported catalyst.28
4. CONCLUSIONS
In this study Cu/Fe hydrotalcites precursors with different
ratio of Cu and Fe have been successfully synthesized and
characterized by XRD, BET, SEM, H2-TPR. All the mate-
rials were active for the total oxidation of toluene after
calcined at different temperatures. It is believed that the
CuFe-MOs have the lower temperature reducibility from
large surface Cu2+ than purity CuO. And there has been a
synergistic effect between Cu and Fe, inducing high sur-
face oxygen species. The Cu/Fe ratio of 4 appeared to be
18. T. Machej, E. M. Serwicka, M. Zimowska, R. Dula, A. Michalik-
IP: 178.250.105.249 On: Fri, 15 Jun 2018 07:22:10
the most adequate to obtain a highly crystalline hydro-
Zym, B. Napruszewska, W. Rojek, and R. Socha, Appl. Catal. A
Gen. 474, 87 (2014).
Copyright: American Scientific Publishers
talcites material. In addition, it is noted that the catalytic
activity enhanced with the increasing amount of Cu in the
HT-precursors, but it decreases when the ratio of Cu/Fe is
above 4. The N2-adsorption desorption isotherms of Cu4Fe-
300 and Cu4Fe-400 have a more distinct adsorption hys-
teresis loop, which means quite a lot of mesoporous exist
in the material. The highest catalytic activity was exhibited
by Cu4Fe-400 of which the T50 and T90 reaches at about
258 ꢀC and 294 ꢀC respectively. Calcination at 500 ꢀC leads
to a certain degree of inactivation of the catalyst.
Delivered by Ingenta
19. D. A. Aguilera, A. Perez, R. Molina, and S. Moreno, Appl. Catal. B
Environ. 104, 144 (2011).
20. F. Kovanda, K. Jirátová, J. Rymeš, and D. Koloušek, Appl. Clay Sci.
18, 71 (2001).
21. H. Yan, J. Lu, M. Wei, J. Ma, H. Li, J. He, D. G. Evans, and X. Duan,
J. Mol. Struc. Theochem. 866, 34 (2008).
22. H. Liu, Q. Jiao, Y. Zhao, H. Li, C. Sun, X. Li, and H. Wu, Mater.
Lett. 64, 1698 (2010).
23. D. Dumbre, V. R. Choudhary, and P. R. Selvakannan, Polyhedron
120, 180 (2016).
24. K. Morishige and M. Shikimi, J. Chem. Phys. 108, 7821 (1998).
25. K. S. W. Sing, Pure Appl. Chem. 57, 603 (2009).
26. W. P. Dow, Y. P. Wang, and T. J. Huang, Appl. Catal. A Gen. 190, 25
(2000).
27. L. Wang, J. Chen, H. Watanabe, Y. Xu, M. Tamura, Y. Nakagawa,
and K. Tomishige, Appl. Catal. B Environ. 160, 701 (2014).
28. X. Liang, F. Qi, P. Liu, G. Wei, X. Su, L. Ma, H. He, X. Lin, Y. Xi,
and J. Zhu, Appl. Clay Sci. 132–133, 96 (2016).
Acknowledgments: This work was supported by the
Fundamental Research Funds for the Central Universities
(2016ZCQ03), the National Natural Science Foundation of
China (51622801, 51572029), and the Beijing Excellent
Young Scholar (2015000026833ZK11).
Received: 21 December 2016. Accepted: 23 March 2017.
3386
J. Nanosci. Nanotechnol. 18, 3381–3386, 2018