RSC Advances
Paper
Graduate Education Innovation Project of Shanxi Province 14 H. Liu, W. Ding, S. Lei, X. Tian and F. Zhou, Selective
(2018SY057), Collaborative Innovation Center for Shanxi
Advanced Permanent Materials (2019-05) and Technology and
adsorption of CH4/N2 on Ni-based MOF/SBA-15 composite
materials, Nanomaterials, 2019, 9, 149.
the 1331 Engineering of Shanxi Province. We appreciate Prof. 15 D. Zhu, C. Guo, J. Liu, L. Wang, Y. Duand and S.-Z. Qiao,
Dr Xiufang Qin (Shanxi Normal University) for her help on
TEM and XRD characterizations. At the same time, I sincerely
deliver my thanks to graduate students of our group in Shanxi
Two-dimensional metal–organic frameworks with high
oxidation states for efficient electrocatalytic urea oxidation,
Chem. Commun., 2017, 53, 10906–10909.
Normal University (Linfen, China) for providing human urine 16 J.-Y. Zhang, T. He, M. Wang, R. Qi, Y. Yan, Z. Dong, H. Liu,
samples.
H. Wang and B. Y. Xia, Energy-saving hydrogen production
coupling urea oxidation over bifunctional nickel-
a
molybdenum nanotube array, Nano Energy, 2019, 60, 894–
902.
17 T. Q. N. Tran, G. Das and H. H. Yoon, Nickel-metal organic
framework/MWCNT composite electrode for non-
enzymatic urea detection, Sens. Actuators, B, 2017, 243, 78–
83.
18 X. Xiao, S. Zheng, X. Li, G. Zhang, X. Guo, H. Xue and
H. Pang, Facile synthesis of ultrathin Ni-MOF nanobelts
for high-efficiency determination of glucose in human
serum, J. Mater. Chem. B, 2017, 5, 5234–5239.
Notes and references
1 M. Tyagi, M. Tomar and V. Gupta, NiO nanoparticle-based
urea biosensor, Biosens. Bioelectron., 2013, 41, 110–115.
2 M. Singh, N. Verma, A. K. Garg and N. Redhu, Urea
biosensors, Sens. Actuators, B, 2008, 134, 345–351.
3 G. Dhawan, G. Sumana and B. D. Malhotra, J. Biochem. Eng.,
2009, 44, 42–52.
4 M. Gutierrez, S. Alegret and M. Valle, Potentiometric
bioelectronic tongue for the analysis of urea and alkaline 19 H. Yan, J. Bai, J. Wang, X. Zhang, B. Wang, Q. Liu and L. Liu,
ions in clinical samples, Biosens. Bioelectron., 2007, 22,
2171–2178.
5 B. Lakard, G. Herlem, S. Lakard, A. Antoniou and B. Fahys,
Graphene homogeneously anchored with Ni(OH)2
nanoparticles as advanced supercapacitor electrodes,
CrystEngComm, 2013, 15, 10007–10015.
Urea potentiometric biosensor based on modied 20 J. Yang, P. Xiong, C. Zheng, H. Qiu and M. Wei, Metal–
electrodes with urease immobilized on polyethylenimine
lms, Biosens. Bioelectron., 2004, 19, 1641–1647.
6 A. Azadbakht and M. B. Gholivand, Covalent attachment of
organic frameworks: a new promising class of materials for
a high-performance supercapacitor electrode, J. Mater.
Chem. A, 2014, 2, 16640–16644.
Ni-2,3-pyrazine dicarboxylic acid onto gold nanoparticle 21 J. Xu, C. Yang, Y. Xue, C. Wang, J. Cao and Z. Chen, Facile
gold electrode modied with penicillamine CdS quantum
dots for electrocatalytic oxidation and determination of
urea, Electrochim. Acta, 2014, 125, 9–21.
synthesis of novel metal-organic nickel hydroxide
nanorods for high performance supercapacitor,
Electrochim. Acta, 2016, 211, 595–602.
7 A. Mahmood, W. Guo, H. Tabassum and R. Zou, Metal- 22 N. I. Marzuki, F. A. Bakar, A. B. Salleh, L. Y. Heng, N. A. Yusof
Organic
Framework-Based
Nanomaterials
for
and S. Siddiquee, Development of Electrochemical
Biosensor for Formaldehyde Determination Based on
Immobilized Enzyme, Int. J. Electrochem. Sci., 2012, 7,
6070–6083.
Electrocatalysis, Adv. Energy Mater., 2016, 1600423.
8 Y. Miao, L. Ouyang, S. Zhou, L. Xu, Z. Yang, M. Xiao and
R. Ouyang, Electrocatalysis and electroanalysis of nickel,
its oxides, hydroxides and oxyhydroxides toward small 23 S. Zhao, K. Zhang, Y. Bai, W. Yang and C. Sun, Glucose
molecules, Biosens. Bioelectron., 2014, 53, 428–439.
9 N. S. Nguyen and H. H. Yoon, Nickel oxide-deposited
cellulose/CNT composite electrode for non-enzymatic urea
detection, Sens. Actuators, B, 2016, 236, 304–310.
10 R. H. Tammam and M. M. Saleh, On the electrocatalytic urea
oxidation on nickel oxide nanoparticles modied glassy
carbon electrode, J. Electroanal. Chem., 2017, 794, 189–196.
oxidase/colloidal gold nanoparticles immobilized in Naon
lm on glassy carbon electrode: direct electron transfer
and electrocatalysis, Bioelectrochemistry, 2006, 69, 158–163.
24 V. Vedharathinam and G. G. Botte, Understanding the
electro-catalytic oxidation mechanism of urea on nickel
electrodes in alkaline medium, Electrochim. Acta, 2012, 81,
292–300.
11 Q. Wang, Y. Xue, S. Sun, S. Yan, H. Miao and Z. Liu, Facile 25 A. G. Meguerdichian, T. Jafari, M. R. Shakil, R. Miao,
synthesis of ternary spinel Co–Mn–Ni nanorods as efficient
bi-functional oxygen catalysts for rechargeable zinc-air
batteries, J. Power Sources, 2019, 435, 226761.
L. A. Achola, J. Macharia, A. A. Shirazi and S. L. Suib,
Synthesis and Electrocatalytic Activity of Ammonium
Nickel Phosphate, [NH4]NiPO4$6H2O, and
b
Nickel
12 Y.-H. Chung, K. Gupta, J.-H. Jang, H. S. Park, I. Jang,
J. H. Jang, Y.-K. Lee, S.-C. Lee and S. J. Yoo, Rationalization
Pyrophosphate, b Ni2P2O7: Catalysts for Electrocatalytic
Decomposition of Urea, Inorg. Chem., 2018, 57, 1815–1823.
of electrocatalysis of nickel phosphide nanowires for 26 B. K. Boggs, R. L. King and G. G. Botte, Urea electrolysis:
efficient hydrogen production, Nano Energy, 2016, 26, 496–
503.
direct hydrogen production from urine, Chem. Commun.,
2009, 32, 4859–4861.
13 P.-Q. Liao, J.-Q. Shenand and J.-P. Zhang, Metal–organic 27 Y. Velichkova, Y. Ivanov, I. Marinov, R. Ramesh,
frameworks for electrocatalysis, Coord. Chem. Rev., 2018,
373, 22–48.
N. R. Kamini, N. Dimcheva, E. Horozova and
T. Godjevargova, Amperometric electrode for
29480 | RSC Adv., 2019, 9, 29474–29481
This journal is © The Royal Society of Chemistry 2019