Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
acetaldehyde is very likely to form during adsorption acetone.
The peak centering at 1745 cm− could correspond to formic
acid. However, the possible formation of acetic acid cannot be
ascertained, because the corresponding ν(CO) band overlaps
with that of the acetone. In addition, we can observe the
typical IR absorption peak of bicarbonates featuring at 1225
cm . Consequently, we can conclude the oxidation of acetone
over Au-SA/DT photocatalyst occurs in the dark. The
assignments of the absorption peaks are shown in Table S4.
Notes and references
DOI: 10.1039/C9CC08578E
1
1
T.R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R.T. Weber,
P. Fornasiero and C.B. Murray, J. Am. Chem. Soc., 2012, 134,
751-6761.
S. Saurabh, P.T. Joseph, M.A. Rahman, M. Abd-Ellah, M.
Mohapatra, P. Debabrata, N.F. Heinig and K.T. Leung, ACS
Nano., 2014, 8, 11891-11898.
6
2
−1
3
4
5
6
7
8
9
L. Zhang, C. Yang, K. L. Lv, Ya. C. Lu, Q. Li, X. F. Wu, Y. Y. Li, X.
F. Li, J. J Fan and M. Li, Chin. J. Catal., 2019, 40, 755-764.
J. S. Cheng, Z. Hu, L. Lv, X. F. Wu, Q. Li, Y. H. Li, X. F. Li and J.
Sun, Appl. Catal. B: Environ., 2018, 232, 330-339.
After establishment of the adsorption equilibrium, the
photocatalytic oxidation of acetone begins, and the in-situ
DRIFTS recording the reaction of acetone over Au-SA/DT under
UV irradiation are displayed in Fig. 5C and Fig. 5D. Although
most of the DRIFTS during photocatalytic reaction are similar
to these of adsorption process, some peaks become much
H. Sakurai, M. Kiuchi, C. Heck and T. Jin, Chem. Commun.,
2
016, 52, 13612-13615.
T. Jin, C. Liu and G. H. Li, Chem. Commun., 2014, 50, 6221-
224.
S. W. Liu, J. G. Yu, and M. Jaroniec, J. Am. Chem. Soc., 2010,
32, 11914-11916.
S. W. Liu, J. Q. Xia, and J. G. Yu, ACS Appl. Mater. Interfaces.,
015, 7, 8166−8175
6
1
−1
stronger such as the peak centering at 1745 cm , indicating a
rapid accumulation of formic acid. In order to verify the above
conclusions, we calculated the reaction path of acetone over
Au-SA/DT photocatalyst and the corresponding reaction
energy is obtained using Dmol3 module. Fig. S15 presents the
changes of the free energy in reactions, from which we can see
that the rate-determining step (RDS) for acetone oxidation is
the decomposion of formic acid with an energy barrier of 1.22
eV. The reactions involved in acetone oxidation are listed in
Table S5. Based on the in-situ DRIFTS and calculation, we
proposed the oxidation pathway of acetone over Au-SA/DT
2
S.K. Pathak, A. Abate, P. Ruckdeschel, B. Roose, K.C. Gödel, Y.
Vaynzof, A. Santhala, S-I. Watanabe, D.J. Hollman, N. Noel, A.
Sepe, U. Wiesner, R. Friend, H.J. Snaith and U. Steiner, Adv.
Funct. Mater., 2014, 24, 6046-6055.
1
0 M.P. Suryawanshi, U.V. Ghorpade, S.W. Shin, M.G. Gang,
X.M. Wang, H. Park, S.H. Kang and J.H. Kim, ACS Catal., 2017,
7
, 8077-8089.
1
1
1 K. Li, B. Chai, T.Y. Peng, J. Mao and L. Zan, ACS Catal., 2013,
3
, 170-177.
2 S.L. Wang, J. Li, S.J. Wang, J. Wu, T.I. Wong, M.L. Foo, W.
photoatalyst (Fig. S16), including the excitation of TiO
2
Chen, K. Wu and G.Q. Xu, ACS Catal., 2017, 7, 6892-6900.
photocatalyst to form ROSs, the adsorption and oxidation of 13 J.M. Valero, S. Obregón and G. Colón, ACS Catal., 2014, 4,
acetone to produce acetic acid and formaldehyde. The
decarboxylation of the acetic acid results in the formation of 14 H. Shang, M.Q. Li, H. Li, S. Huang, C.L. Mao, Z.H. Ai and L. Z.
3320-3329.
Zhang, Environ. Sci. Technol., 2019, 53, 6444-6453.
5 Z. Hu, K.N. Li, X.F. Wu, N. Wang, X.F. Li,Q. Li, L. Li and K. L. Lv,
Appl. Catal. B: Environ., 2019, 256, 117860.
methyl, which can also transform into formaldehyde. Under
the attacks of ROSs, formaldehyde is further oxidized into
formic acid, and finally decomposes into CO .
2
1
1
1
1
1
6 Q. Li,; Y. Xia, C. Yang, K.L. Lv, M. Lei and M. Li, Chem. Eng. J.,
2
018, 349, 287-296.
7 G.D. Moon, J.B. Joo, M. Dahl, H.J. Jung and Y.D. Yin, Adv.
Funct. Mater., 2014, 24, 848-852.
In summary, Ov is used to anchor and stabilize the single
atomic Au on the surface of TiO -HMSs (Au-SA/DT). The
2
8 J.B. Joo, I. Lee, M. Dahl, G.D. Moon, F. Zaera and Y.D. Yin,
Adv. Funct. Mater., 2013, 23, 4246-4250.
formation of Ti-Au-Ti bond facilitates the electron transfer
from Ti to Au, resulting in an increased adsorption and
activation of acetone. The photocatalytic activity of Au-SA/DT
9 X. Chen, L. Liu, P. Yu and S.S. Mao, Science., 2011, 331, 746-
8
01.
hollow microspheres is much higher than that of perfect TiO
HMSs (PT), defective TiO -HMS (DT) and even Au nanoparticles
deposited perfect TiO
2
-
20 P.P. John, B. Kieron and M. Ernzerhof, Phys Rev. Lett., 1996,
77, 3865-3868.
2
-HMSs (Au-NP/PT). The degradation 21 J.W. Wan, W.X. Chen, C.Y. Jia, L.R. Zheng, J.C. Dong, X.S.
2
Zheng, Y. Wang, W.S. Yan, C. Chen, Q. Peng, D.S. Wang and
Y.D. Li, Adv Mater., 2018, 1705369.
pathway of acetone on the surface of Au-SA/DT is proposed
based on the in-situ DRIFTS and DFT calculation. Au-SA/DT
photocatalyst has the merits of good permeability, strong
light-harvesting ability, broad light-responsive range and
excellent photo-stability, which makes it promising to be
practically used for air purification.
2
2
2 G. Kresse and J. Furthmiiller, Computa. Mat. Sci., 1996, 6, 15-
1
5125.
3 L. Hou, M. Zhang, Z. Guan, Q.W. Li and J. Yang, Appl. Sur. Sci.,
2
018, 428, 640-647.
2
2
4 P.E. Blochl, Phys. Rev. B. 1994, 50, 17953-17979.
5 M.P. Mani Prabha Singh and G.F. Strouse, J. Am. Chem. Soc.,
2
010, 132, 9383-9391.
This work was supported by the National Natural Science
Foundation of China (51672312, 21571192 & 21373275) and
2
6 Z. Tian, H. Cui, G. Zhu, W. Zhao, J. Xu, F. Shao, J. He and F.
Huang, J. Power Sources., 2016, 325, 697-705.
the Fundamental Research Funds for the Central Universities, 27 M.P. Casaletto, A. Longo, A. Martorana, A. Prestianni and
A.M. Venezia, Surf. Interface Anal., 2006, 38, 215-218.
8 M. El-Maazawi, A. N. Finken, A. B. Nair and V. H. Grassian, J.
Catal., 2000, 191, 138-146.
South‐Central University for Nationalities (CZT18016).
2
2
9 E. Rekoske and M. A. Barteau, Langmuir., 1999, 15, 2061-
Conflicts of interest
2
070.
There are no conflicts to declare.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins