HC-SCR OF NOx ON CuO (+Ag)/MeO–ZrO2
139
redispersion and/or formation of mixed copper–silver
oxidic microphases. Silver addition appears also to be im-
portant for decreasing the surface blocking by coke via fa-
cilitation of its oxidation by weakly bound oxygen (25).
Certainly, further studies are required to prove such a sug-
gestion.
Since the highest level of low-temperature activity in all
three reactions was achieved by the same Ag + CuO/BaO–
ZrO2 sample with the highest degree of interaction between
copper and silver oxidic species (7), such an interaction
appears to be important for ensuring a good performance
in NOx selective reduction by different hydrocarbons.
2. Bethke, K. A., Kung, M. C., Yang, B., Shah, M., Alt, D., Li, C., and
Kung, H. H., Catal. Today 26, 169 (1995).
3. Bethke, K. A., Li, C., Kung, M. C., Yang, B., and Kung, H. H., Catal.
Lett. 31, 287 (1995).
4. Figueras, F., Coq, B., Ensuque, E., Tachon, D., and Delahay G., Catal.
Today 42, 117 (1998).
5. Delahay, G., Ensuque, E., Coq, B., and Figueras, F., J. Catal. 175, 7
(1998).
6. Pietrogiacomi, D., Sannino, D., Tuti, S., Ciambelli, P., Indovina, V.,
Occhiuzzi, M., and Pepe, F., Appl. Catal. B 21, 141 (1999).
7. Sadykov, V. A., et al., part 1.
8. Sadykov, V. A., Ivanova, A. S., Ivanov, V. P., Alikina, G. M., Kharlanov,
A. N, Lunina, E. V., Lunin, V. V., Matyshak, V. A., Zubareva, N. A.,
and Rozovskii, A. Ya., in “Advanced Catalytic Materials” (P. W.
Lednor, D. A. Nagaki, and L. T. Thompson, Eds.), Vol. 454, p. 199.
Pittsburgh, PA, 1997.
9. Sadykov, V. A., Baron, S. L., Matyshak, V. A., Alikina, G. M., Bunina,
R. V., Rozovskii, A. Ya., Lunin, V. V., Lunina, E. V., Kharlanov, A. N.,
Ivanova, A. S., and Veniaminov, S. A., Catal. Lett. 37, 157 (1996).
10. Meunier, F. C., Breen, J. P., Zuzaniuk, V., Olsson, M., and Ross, J. R. H.,
J. Catal. 187, 493 (1999).
CONCLUSIONS
In the reaction of NOx selective reduction by hydrocar-
bons (propane, propylene, and decane), catalytic perfor-
mance of zirconia-suported copper oxidic species including
those promoted by silver appears to be mainly determined
by their local structure and composition affecting the bond-
ing strength of oxygen and strongly bound nitrate species.
In general, for the same system, the maximum level of NOx
conversion and temperature of maximum NOx conversion
is strongly dependent upon the type of reducing agent. No
universal relation was found between the surface density
of coordinatively unsaturated cations able to activate hy-
drocarbons and the activity of catalysts for the HC-SCR. It
can be explained by blocking the surface sites in reaction
media either by strongly bound nitrate species or by coke.
Addition of silver was found to be of significance only in
the case of strong interaction between the metallic and ox-
idic components. Such an interaction helps to decrease the
bonding strength of oxygen with mixed copper–silver oxidic
species, thus decreasing the bonding strength of adsorbed
nitrate species. When it takes place, in all three reactions
studied here, the level of activity at moderate (250–350 C)
temperatures approaches that for the most efficient copper-
containing systems tested up to date such as Cu-ZSM-5,
Cu/sulfated zirconia Cu/mordenite, or Cu-beta zeolite.
11. Matyshak, V. A., Ukharskii, A. A., Il’ichev, A. N., Sadykov, V. A., and
Korchak, V. N., Kinet. Katal. 40, 116 (1999).
12. Tikhov, S. F., Sadykov, V. A., Kryukova, G. N., Paukshtis, E. A.,
Popovskii, V. V., Starostina, T. G., Anufrienko, V. F., Razdobarov,
V. A., Bulgakov, N. N., and Kalinkin, A. V., J. Catal. 134, 506 (1992).
13. Sadykov, V. A., Paukshtis, E. A., Beloshapkin, S. A., Alikina, G. M.,
Veniaminov, S. A., Netyaga, E. V., Bunina, R. V., Lunina, E. V., Lunin,
V. V., Matyshak, V. A., and Rozovskii, A. Ya., React. Kinet. Catal. Lett.
65, 113 (1998).
14. Yamaguchi, M., Goto, I., Wang, Zh. M, and Kumagai, M., in “Science
and Technology in Catalysis,” p. 372. Kodansha, Tokyo, 1999.
15. Satokawa, Sh., Yamaseki, K., Hoshi, F., and Yahagi, M., Yokota, H.,
Uchida, H., Furuyama, M., Sumiya, S., and Yoshida, K., in “Science
and Technology in Catalysis,” p. 375. Kodansha, Tokyo, 1999.
16. Matyshak, V. A., Baron, S. L., Ukharskii, A. A., Il’ichev, A. N.,
Sadykov, V. A., and Korchak, V. N., Kinet. Catal. 37, 585 (1996).
17. Sadykov, V. A., Beloshapkin, S. A., Paukshtis, E. A., Alikina, G. M.,
Kochubei, D. I., Degtyarev, S. P., Bulgakov, N. N., Veniaminov, S. A.,
Netyaga, E. V., Bunina, R. V., Kharlanov, A. N., Lunina, E. V., Lunin,
V. V., Matyshak, V. A., Rozovskii, A. Ya., and Pol. J., Environ. Studies
1, 21 (1997).
18. Kung, M. C., and Kung, H. H., Catal. Today 30, 5 (1996).
19. Bethke, K. A., and Kung, H. H., J. Catal. 172, 93 (1997).
20. Metelkina, O. V., Lunin, V. V., Sadykov, V. A., Beloshapkin, S. A.,
Alikina, G. M., Lunina, E. V., and Kharlanov, A. N., Neftekhimia 40,
108 (2000).
21. Pasel, J., Speer, V., Albrecht, Ch., Richter, F., and Papp, H., Appl.
Catal. B 25, 105 (2000).
ACKNOWLEDGMENTS
22. Centi, G., Galli, A., and Perathoner, S., J. Chem. Soc. Faraday Trans.
92, 5129 (1996).
This research was supported by the INTAS Project 97-11720.
23. Vergne, S., Berreghis, A., Tantet, J., Canaff, C., Magnoux, P., Guisner,
M., Davias, N., and Noirot, R., Appl. Catal. B 18, 37 (1998).
24. Coq, B., Tachon, D., and Figueras, F., Catal. Lett. 35, 183 (1995).
25. Delahay, G., Coq, B., and Broussous, L., Appl. Catal. B 12, 49 (1997).
REFERENCES
1. Bethke, K. A., Alt, D., and Kung, M. C., Catal. Lett. 25, 37 (1994).