R. Blume et al. / Journal of Catalysis 239 (2006) 354–361
361
at the boundary between two phases. The present study pro-
vides experimental evidence that the highest CO oxidation rate
is monitored in the temperature range of 500–600 K, at which
two Ru oxidation states coexist.
[2] A. Böttcher, H. Niehus, J. Chem. Phys. 110 (1999) 3186, Phys. Rev. B 60
1999) 14396.
(
[3] H. Over, Y.D. Kim, A.P. Seitsonen, E. Lundgren, M. Schmid, P. Varga, A.
Morgante, G. Ertl, Science 287 (2000) 1474.
[4] H. Over, A.P. Seitsonen, E. Lundgren, M. Wiklund, J.N. Andersen, Chem.
Phys. Lett. 342 (2001) 467.
The results of this work apply well to real Ru catalyst sys-
tems, which are nanoparticles forming amorphous oxide with
poorly defined stoichiometry [33,34]. Such “oxidized” states of
the Ru nanoparticles, often described as RuxOy, are comparable
with surface oxide with subsurface oxygen, not with the well-
structured RuO2(110) surface. This study conforms that RuO2
formed at temperatures above 500 K is also active but repre-
sents a limiting case of a well-ordered model structure. The
long-range ordering of the RuO2(110) surface is not a prerequi-
site for catalytic function, but is instrumental in unravelling and
providing insight into the mechanisms of CO oxidation at the
atomic level. As noted above, a recent study of the CO oxida-
tion on polycrystalline powdered Ru catalyst in the temperature
range of 363–453 K showed that under dynamic catalytic con-
ditions, the active state is an ultra-thin Ru oxide film, whereas
fully oxidized RuO2 particles, formed at higher temperature,
exhibit lower activity [32]. This deactivation is tentatively at-
tributed to roughening and formation of inactive RuO2 facets.
In general, the long-range ordered oxide structures avail-
able in macroscopic systems cannot be the ones working under
conditions of high chemical potential and enabled structural
dynamics (real world). However, they are excellent model sys-
tems for fundamental experimental and theoretical studies of
catalytic reactions, helping to identify the general reactivity
trend on metallic and O-rich states of catalysts used in redox
processes.
[5] Z.-P. Liu, P. Hu, A. Alavi, J. Chem. Phys. 114 (2001) 5956.
[6] K. Reuter, M. Scheffler, Phys. Rev. Lett. 90 (2003) 46103, Phys. Rev. B 60
(2003) 45407.
[
[
[
7] J. Wang, V.Y. Fan, K. Jacobi, G. Ertl, J. Phys. Chem. B 106 (2002) 3422.
8] S.H. Kim, J. Wintterlin, J. Chem. Phys. B 108 (2004) 14565.
9] K. Reuter, D. Frenken, M. Scheffler, Phys. Rev. Lett. 93 (2004) 116105.
[10] H. Over, M. Muhler, Prog. Surf. Sci. 72 (2003) 3, and references therein.
11] H. Over, M. Knapp, E. Lundgren, A.P. Seitsonen, M. Schmid, P. Varga,
[
Chem. Phys. Chem. 5 (2004) 167, and references therein.
[
[
12] Y.D. Kim, H. Over, G. Krabbes, G. Ertl, Top. Catal. 14 (2001) 95.
13] A. Böttcher, U. Starke, H. Conrad, R. Blume, L. Gregoriatti, B. Kaulich,
A. Barinov, M. Kiskinova, J. Chem. Phys. 117 (2002) 8104.
[14] R. Blume, H. Niehus, H. Conrad, A. Böttcher, J. Phys. Chem. 108 (2004)
4332.
1
[
[
[
15] A. Böttcher, B. Krenzer, H. Conrad, H. Niehus, Surf. Sci. 504 (2002) 42.
16] X.-Q. Gong, Z.-P. Liu, R. Raval, P. Hu, J. Amer. Chem. Soc. 126 (2004) 8.
17] One monolayer equals the number of Ru atoms on the (0001) surface. We
use in further as an unit to express the total O load
[18] M. Todorova, W.X. Li, M.V. Ganduglia-Pirovano, C. Stampfl, K. Reuter,
M. Scheffler, Phys. Rev. Lett. 89 (2002) 96103.
19] K. Reuter, C. Stampfl, M.V. Ganduglia-Pirovano, M. Scheffler, Chem.
Phys. Lett. 352 (2002) 311.
20] P. Quinn, D. Brown, D.P. Woodruff, T.C.Q. Noakes, P. Bailey, Surf.
Sci. 491 (2001) 208.
[21] R. Blume, H. Niehus, H. Conrad, A. Böttcher, L. Aballe, L. Gregoriatti,
A. Barinov, M. Kiskinova, J. Phys. Chem. B 109 (2005) 14052.
22] H. Over, A.P. Seitsonen, Science 297 (2002) 2003.
23] H. Bluhm, M. Hävecker, A. Knop-Gericke, E. Kleimenov, R. Schlögl, D.
Teschner, V.I. Bukhtiyarov, D.F. Ogletree, M. Salmeron, J. Phys. Chem.
B 108 (2004) 14340.
[
[
[
[
[24] D.F. Ogletree, H. Bluhm, C. Lebedev, C.S. Fadley, Z. Hussain, M.
Salmeron, Rev. Sci. Instrum. 73 (2002) 3872.
Acknowledgments
[
25] S. Lizzit, A. Baraldi, A. Groso, K. Reuter, M.V. Ganduglia-Pirovano, C.
Stampfl, M. Scheffler, M. Stichler, C. Keller, W. Würth, D. Menzel, Phys.
Rev. B 63 (2001) 205419.
The authors are indebted to Dr. W. Ranke for providing
a critical reading of the manuscript and engaging in illumi-
nating discussions. M. Kiskinova thanks the AvH Foundation
for an award to pursue research in FHI-Berlin in 2004–2005.
P. Dudin acknowledges financial support under contract NMP3-
CT-2003-505670 (NANO2). The BESSY staff is acknowledged
for their continuous support in performing the present measure-
ments.
[26] M.P. Seah, Surf. Interface Anal. 9 (1986) 85.
[27] H. Over, A.P. Seitsonen, E. Lundgren, M. Smedh, J.N. Anderesen, Surf.
Sci. 504 (2002) L196.
[28] A. Schiffer, P. Jacob, D. Menzel, Surf. Sci. 389 (1997) 116.
[29] W.X. Li, C. Stampfl, M. Scheffler, Phys. Rev. B 67 (2003) 45408.
[30] C.H. F Peden, D.W. Goodman, J. Phys. Chem. 90 (1986) 1360.
[31] M. Mavrikakis, B. Hammer, J.K. Norskov, Phys. Rev. Lett. 81 (1998)
2819.
[
32] V. Narkhede, J. Assmann, M. Muhler, Z. Phys. Chem. 219 (2005) 979.
References
[33] W. Vogel, N. Alonso-Vante, J. Catal. 232 (2005) 395.
[
34] B.-Z. Zhan, M.A. White, T.-K. Sham, J.A. Pincock, R.J. Doucet, K.V.
Ramana Rao, K.N. Robertson, T.S. Cameron, J. Amer. Chem. Soc. 125
(2003) 2195.
[1] A. Böttcher, H. Niehus, S. Schwegmann, H. Over, G. Ertl, J. Phys. Chem.
B 101 (1997) 11185.