13398 J. Phys. Chem. B, Vol. 110, No. 27, 2006
Zhou et al.
(15) Corrigan, D. S.; Weaver, M. J. J. Electroanal. Chem. 1988, 241,
143.
(16) Hammer, B.; Norskov, J. K. AdV. Catal. 2000, 45, 71.
(17) Hammer, B.; Norskov, J. K. Surf. Sci. 1995, 343, 211.
(18) Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Norskov, J.
K. J. Mol. Catal. A: Chem. 1997, 115, 421.
(19) Mavrikakis, M.; Hammer, B.; Norskov, J. K. Phys. ReV. Lett. 1998,
81, 2819.
(20) Greeley, J.; Norskov, J. K.; Mavrikakis, M. Annu. ReV. Phys. Chem.
2002, 53, 319.
(21) Ganduglia-Pirovano, M. V.; Natoli, V.; Cohen, M. H.; Kudrnovsky,
Due to the size of the nanoparticles in use, only the initial state
effect in the XPS measurements has to be considered. We could
then provide a line of evidence that the initial state effect results
from the lattice strain change that occurs as bond distances are
shorter in smaller nanoparticles. Therefore, the lattice strain
effect and its electronic-level consequences emerge as the key
driving force in the catalysis, at least in reacting HCOOH to
CO2. These electronic-level factors that are affected by the lattice
strain change are the core-level binding energies, the related
position of the center of the d-band, and the Knight sifts (or
local DOS) in the EC NMR measurements.39
J.; Turek, I. Phys. ReV. B 1996, 54, 8892.
(22) Hennig, D.; Ganduglia-Pirovano, M. V.; Scheffler, M. Phys. ReV.
B 1996, 53, 10344.
(23) Rodriguez, J. A. Surf. Sci. Rep. 1996, 24, 223.
(24) Rodriguez, J. A.; Goodman, D. W. Science 1992, 257, 897.
(25) Zhang, J. l.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adizic,
R. R. Angew. Chem., Int. Ed. 2005, 44, 2132.
(26) Kibler, L. A.; el-Aziz, A. m.; Hoyer, R.; Kolb, D. M. Angew. Chem.,
Int. Ed. 2005, 44, 2080.
(27) Lewera, A.; Zhou, W. P.; Vericat, C.; Chung, J. H.; Haasch, R.;
Wieckowski, A.; Bagus, P. S. Electrochim. Acta 2006, 51, 3950.
(28) Vericat, C.; Wakisaka, M.; Haasch, R.; Bagus, P. S.; Wieckowski,
A. J. Solid-State Electrochem. 2004, 8, 794.
(29) Seah, M. P.; Gilmore, I. S.; Beamson, G. Surf. Interface Anal. 1998,
26, 642.
(30) Anthony, M. T.; Seah, M. P. Surf. Interface Anal. 1984, 6, 95.
(31) Wagner, C. D.; Naumkin, A. V.; Kraut-Vass, A.; Allison, J. W.;
Powell, C. J.; Rumble, J. R., Jr. NIST Standard Reference Database 20,
(32) Waszczuk, P.; Solla-Gullon, J.; Kim, H.-S.; Tong, Y. Y.; Montiel,
V.; Aldaz, A.; Wieckowski, A. J. Catal. 2001, 203, 1.
(33) Bennett, P. A.; Fuggle, J. C. Phys. ReV. B: Condens. Matter Mater.
Phys. 1982, 26, 6030.
To be more specific, we have found that the most active Pd
nanoparticle catalyst in formic aid electrooxidation is made of
the smallest particles. Such smallest particles display the highest
binding energy shift and the highest valence band center
downshift with respect to Fermi level, which is consistent with
enhancement of the d-band hybridization in small nanoparti-
cles.With the formic acid oxidation mechanism represented by
eqs 1-3 (see above), we interpret our data as follows: the lower
d-band center results in a decrease in adsorption energy of the
formate intermediate that enhances the rate of the HCOOH
molecule decomposition via the direct path. This conjecture is
consistent with predictions of the modern theory of heteroge-
neous catalysis concerning the center of the d-band shifts of
metal and alloy catalysts in reacting simple organic molecules
to products.
(34) Pavese, A.; Solis, V.; Giordano, M. C. J. Electroanal. Chem. 1988,
245, 145.
Acknowledgment. This work is supported by the National
Science Foundation Grant No. CHE 03-49999 and is also
supported by the U.S. Department of Energy under Award No.
DEGF-02-99-ER14993.
(35) Pallassana, V.; Neurock, M.; Hansen, L. B.; Hammer, B.; Norskov,
J. K. Phys. ReV. B 1999, 60, 6140.
(36) Wertheim, G. K.; DiCenzo, S. B.; Buchanan, D. N. E. Phys. ReV.
B 1986, 33, 5384.
(37) Mason, M. G.; Gerenser, L. J.; Lee, S.-T. Phys. ReV. Lett. 1977,
39, 288.
References and Notes
(38) Citrin, P. H.; Wertheim, G. K. Phys. ReV. B 1983, 27, 3176.
(39) Babu, P. K.; Oldfield, E.; Wieckowski, A.; In Modern Aspects of
Electrochemistry; Vayenas, C. G., Conway, B. E., White, R. E., Gamboa-
Adelco, A. E., Eds.; Kluwer Academic Publishers: New York, 2003; p 1.
(40) Richter, B.; Kuhlenbeck, H.; Freund, H.-J.; Bagus, P. S. Phys.
ReV. Lett. 2004, 93, 026805.
(1) Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.;
Barnard, T.; J. Power Sources 2002, 111, 83.
(2) Rice, C.; Ha, S.; Masel, R. I.; Wieckowski, A. J. Power Sources
2003, 115, 229.
(3) Baldauf, M.; Kolb, D. M. J. Phys. Chem. 1996, 100, 11375.
(4) Lu, G.-Q.; Crown, A.; Wieckowski, A. J. Phys. Chem. B 1999,
103, 9700.
(5) Waszczuk, P.; Barnard, T. M.; Rice, C.; Masel, R. I.; Wieckowski,
A. Electrochem. Commun. 2002, 4, 599.
(6) Zhao, M. C.; Rice, C.; Masel, R. I.; Waszczuk, P.; Wieckowski,
A. J. Electrochem. Soc. 2004, 151, A131.
(7) Ha, S.; Larsen, R.; Masel, R. I. J. Power Sources 2005, 144, 28.
(8) Zhu, Y. M.; Khan, Z.; Masel, R. I. J. Power Sources 2005, 139,
15.
(9) Larsen, R.; Zakzeski, J.; Masel, R. I. Electrochem. Solid-State Lett.
2005, 8, A291.
(10) Henry, C. R. Surf. Sci. Rep. 1998, 31, 231.
(41) Bagus, P. S.; Nelin, C. J.; Kay, E.; Parmigiani, F. J. Electron
Spectrosc. Relat. Phen. 1987, 43, C13.
(42) Klimenkov, M.; Nepijko, S.; Kuhlenbeck, H.; Baumer, M.; Schlogl,
R.; Freund, H.-J. Surf. Sci. 1997, 391, 27.
(43) Nepijko, S. A.; Klimenkov, M.; Adelt, M.; Kuhlenbeck, H.; Schlogl,
R.; Freund, H.-J. Langmuir 1999, 15, 5309.
(44) Bagus, P. S.; Wieckowski, A.; Freund, H.-J. Chem. Phys. Lett. 2005,
420, 42.
(45) Egelhoff, W. F., Jr. Surf. Sci. Rep. 1987, 6, 253.
(46) Mason, M. G. Phys. ReV. B 1983, 27, 748.
(47) Wertheim, G. K. Z. Phys. D: At., Mol. Clusters 1989, 12, 319.
(48) Wertheim, G. K. Z. Phys. B 1987, 66, 53.
(49) Bagus, P. S.; Illas, F.; Pacchioni, G.; Parmigiani, F. J. Electron
Spectrosc. Relat. Phenom. 1999, 100, 215.
(11) Capon, A.; Parsons, R. J. Electroanal. Chem. 1973, 45, 205.
(12) Vela, M. E.; Lezna, R. O.; De Tacconi, N. R.; Arvia, A. J.; Beden,
B.; Hahn, F.; Lamy, C. J. Electroanal. Chem. 1992, 323, 289.
(13) Samjeske, G.; Osawa, M. Angew. Chem., Int. Ed. 2005, 44, 5694.
(14) Kunimatsu, K.; Kita, H. J. Electroanal. Chem. 1987, 218, 155.
(50) Masel, R. I. Principles of adsorption and reaction on solid surfaces;
Wiley-Interscience: New York, 1996.