Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
show “turn-off” manner in emission spectra upon Cu2+
binding due to the fluorescence-quenching nature of para-
magnetic Cu2+.5 Furthermore, only a few examples can
display “turn-on” or ratiometric fluorescent changes in
emission spectra, which are desirable for analytical purposes
by the enhancement of fluorescence or changes in the ratio
of the intensities of the emission at two wavelengths.6
Recently a rhodamine-based derivative bearing a pyrene
group as a chemosensor for Cu2+ was reported in our work, in
which the rhodamine ring-opening process was introduced to
give a colorimetric change and “turn-on” fluorescence signal
toward Cu2+.7,8 Since the fluorescence of pyrene was
quenched upon addition of Cu2+, the signal is not observed
obviously. Introducing another fluorophore to give a strong
fluorescence first upon binding with some other ions and
show the typical rhodamine fluorescence later by the replace-
ment of Cu2+ could ensure the ratiometric signal output. Therefore,
1,8-naphthalimide, as a typical ICT fluorophore, was introduced
to form the ratiometric displacement system in 1.9
mode Cu2+-selective sensor Via two mechanisms: the rhodamine
ring-opening mechanism and ratiometric displacement from
1-Zn2+ complex. As far as we are aware, 1 is the first
rhodamine-based dual-mode ratiometric sensor for Cu2+ ion
utilizing two different mechanisms.
Scheme 1. Synthesis of Chemosensors 1 and Its Crystal Structure
This paper reports design and synthesis of a new rhodamine-
based derivative bearing a N-butyl-1,8-naphthalimide group (1),
which displays a selective colorimetric change and fluorescence
“turn-on” changes at 550 nm Via rhodamine ring-opening
approach toward Cu2+ among the other examined metal ions.
Compound 1 also showed a remarkable ratiometric fluorescence
enhancement toward Zn2+ with 100 nm red-shift by a typical
ICT response. As expected, the naphthalimide moiety served
successfully as a source of these ratiometric changes. Moreover,
another ratiometric fluorescent signal output for Cu2+ can be
observed when Zn2+ in the 1-Zn2+ complex was displaced with
Cu2+. These results demonstrated that 1 could act as a dual-
(4) (a) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T. A.;
Huxley, T. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. ReV.
1997, 97, 1515. (b) Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron
2005, 61, 8551. (c) Kim, J. S.; Quang, D. T. Chem. ReV. 2007, 107, 3780.
(d) Liu, B.; Tian, H. Chem. Commun. 2005, 3156. (e) Qi, X.; Jun, E. J.;
Xu, L.; Kim, S.-J.; Hong, J. S. J.; Yoon, Y. J.; Yoon, J. J. Org. Chem.
2006, 71, 2881. (f) Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S.-K. Org.
Lett. 2006, 8, 371. (g) Jung, H. S.; Kwon, P. S.; Lee, J. W.; Kim, J. I.;
Hong, C. S.; Kim, J. W.; Yan, S.; Lee, J. Y.; Lee, J. H.; Joo, T.; Kim, J. S.
J. Am. Chem. Soc. 2009, 131, 2008. (h) Huang, X.; Guo, Z.; Zhu, W.; Xie,
Y.; Tian, H. Chem. Commun. 2008, 5143.
(5) Zheng, Y.; Orbulescu, J.; Ji, X.; Andreopoulos, F. M.; Pham, S. M.;
Leblanc, R. M. J. Am. Chem. Soc. 2003, 125, 2680.
(6) (a) Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997,
119, 7386. (b) Liu, J.; Lu, Y. J. Am. Chem. Soc. 2007, 129, 9838. (c) Xiang,
Y.; Tong, A.; Jin, P.; Ju, Y. Org. Lett. 2006, 8, 2863. (d) Swamy, K. W. K.;
Ko, S.-K.; Kwon, S.; Lee, H.; Mao, C.; Kim, J.-M.; Lee, K.-H.; Kim, J.;
Shin, I.; Yoon, J. Chem. Commun. 2008, 5915. (e) Chen, X.; Jou, M.; Lee,
H.; Kou, S.; Lim, J.; Nam, S.-W.; Park, S.; Kim, K.-M.; Yoon, J. Sens.
Actuat. B 2009, 137, 597. (f) Wen, Z. C.; Yang, R.; He, H.; Jiang, Y. B.
Chem. Commun. 2006, 106. (g) Wu, Q.; Anslyn, E. V. J. Am. Chem. Soc.
2004, 126, 14682. (h) Kim, Y. R.; Kim, H. J.; Kim, J. S.; Kim, H. AdV.
Mater. 2008, 20, 4428. (i) Kim, H. J.; Lee, S. J.; Park, S. Y.; Jung, J. H.;
Kim, J. S. AdV. Mater. 2008, 17, 3229. (j) Jung, H. S.; Park, M.; Han,
D. Y.; Kim, E.; Lee, C.; Ham, S.; Kim, J. S. Org. Lett. 2009, 11, 3378. (k)
Kim, H. J.; Hong, J.; Hong, A.; Ham, S.; Lee, J. H.; Kim, J. S. Org. Lett.
2008, 10, 1963. (l) Li, G. K.; Xu, Z. X.; Chen, C. F.; Huang, Z. T. Chem.
Commun. 2008, 1774. (m) Zhao, Y.; Zhang, X. B.; Han, Z. X.; Qiao, L.;
Li, C. Y.; Jian, L. X.; Shen, G. L.; Yu, R. Q. Anal. Chem. 2009, 81, 7022.
(7) Zhou, Y.; Wang, F.; Kim, Y.; Kim, S.-J.; Yoon, J. Org. Lett. 2009,
As shown in Scheme 1, 4-(5′-ethynylsalicylaldehyde)-N-
butyl-1,8-naphthalimides (4) was first synthesized by modi-
fying the reported procedure with an improved yield of
82%.10 Compound 4 was then reacted with rhodamine 6G
hydrazide (5) to give the hydrazone 1 in 56% yield. The
detailed experimental procedures and the characterization of
the new compounds are described in Supporting Information.
Sensor 1 was further confirmed by X-ray analysis (Scheme
1). The single crystal of 1 suitable for X-ray diffraction
studies was grown by the vapor diffusion of diethyl ether
into a CH3CN solution of 1.
To get further insight into the binding of Cu2+ with 1, the
absorption spectra of 1 upon titration with Cu2+ were
recorded (Figure 1). Upon addition of Cu2+, three new
11, 4442
(8) Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. Chem.
Soc. ReV. 2008, 37, 1465
.
.
(9) (a) Xu, Z.; Yoon, J.; Spring, D. R. Chem. Soc. ReV. 2010, 39, 1996.
(b) Xu, Z.; Xiao, Y.; Qian, X.; Cui, J.; Cui, D. Org. Lett. 2005, 7, 889. (c)
Xu, Z.; Baek, K.-H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. R.; Shin, I.;
Yoon, J. J. Am. Chem. Soc. 2010, 132, 601.
(10) Yang, J. X.; Wang, X. L.; Wang, X. M.; Xu, L. H. Dyes Pigm.
2005, 66, 83.
Org. Lett., Vol. 12, No. 17, 2010
3853