Page 19 of 20
Dalton Transactions
DOI: 10.1039/C6DT04414J
(5). (a) D. Kim and E.ꢀJ. Shin, Bull. Korean Chem. Soc., 2003, 24, 1490ꢀ1494; (b) D.
LeGourriérec, M. Andersson, J. Davidsson, E. Mukhtar, L. Sun and L. Hammarström, J.
Phys. Chem. A, 1999, 103, 557ꢀ559.
(6). (a) J.ꢀP. Collin, A. Harriman, V. Heitz, F. Odobel and J.ꢀP. Sauvage, J. Am. Chem. Soc.,
1994, 116, 5679ꢀ5690; (b) A. Harriman, F. Odobel and J.ꢀP. Sauvage, J. Am. Chem. Soc.,
1995, 117, 9461ꢀ9472; (c) L. Flamigni, N. Armaroli, F. Barigelletti, V. Balzani, J.ꢀP. Collin,
J.ꢀO. Dalbavie, V. Heitz and J.ꢀP. Sauvage, J. Phys. Chem. B, 1997, 101, 5936ꢀ5943; (d) K.
Araki and H. E. Toma, J. Photochem. Photobiol., A, 1994, 83, 245ꢀ250; (e) T. Ben Hadda
and H. Le Bozec, Inorg. Chim. Acta, 1993, 204, 103ꢀ107.
(7). (a) K. Araki and H. E. Toma, J. Coord. Chem., 1993, 30, 9ꢀ17; (b) T. J. Meyer, Acc.
Chem. Res., 1989, 22, 163ꢀ170.
(8). Y. Qin and Q. Peng, International Journal of Photoenergy, 2012, 2012, 21.
(9). At a concentration of 3.0 10ꢀ4 M, [1a] = 1.8 10ꢀ4 M, [1b] = 1.5 10ꢀ4 M.
(10). (a) M. J. Lundqvist, E. Galoppini, G. J. Meyer and P. Persson, J. Phys. Chem. A, 2007,
111, 1487ꢀ1497; (b) R. E. Piau, T. Guillon, E. Lebon, N. Perrot, F. Alary, M. BoggioꢀPasqua,
J.ꢀL. Heully, A. Juris, P. Sutra and A. Igau, New J. Chem., 2012, 36, 2484; (c) B. J. Coe, E.
C. Harper, M. Helliwell and Y. T. Ta, Polyhedron, 2011, 30, 1830ꢀ1841.
(11). E. Rousset, D. Chartrand, I. Ciofini, V. Marvaud and G. S. Hanan, Chem. Commun.,
2015, 51, 9261ꢀ9264.
(12). The speciation values have been obtained by plotting the concentration of the
assemblies 1a and 1b against the concentration of the initial substrate 1 taking into account
the values of the association constants Kaʹ = 7.2 103 M–1 and Kaʺ = 2.5 103 M–1. The
simulations have been fitted by Gepasi software. See: P. Mendes, Computer applications in
the biosciences : CABIOS, 1993, 9, 563ꢀ571. At a concentration of 1.24 10ꢀ3 M, [1a] = 4.2
10ꢀ4 M, [1b] = 6.8 10ꢀ4 M.
(13). (a) V. Leigh, W. Ghattas, R. Lalrempuia, H. MullerꢀBunz, M. T. Pryce and M. Albrecht,
Inorg Chem, 2013, 52, 5395ꢀ5402; (b) M. Schwalbe, B. Schäfer, H. Görls, S. Rau, S.
Tschierlei, M. Schmitt, J. Popp, G. Vaughan, W. Henry and J. G. Vos, Eur. J. Inorg. Chem.,
2008, 2008, 3310ꢀ3319.
(14). N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877ꢀ910.
(15). (a) F. D'Souza, S. Gadde, M. E. Zandler, M. Itou, Y. Araki and O. Ito, Chem. Commun.,
2004, 2276ꢀ2277; (b) C.ꢀW. Huang, K. Yuan Chiu and S.ꢀH. Cheng, Dalton Trans., 2005,
2417ꢀ2422.
(16). V. A. Walters, J. C. de Paula, B. Jackson, C. Nutaitis, K. Hall, J. Lind, K. Cardozo, K.
Chandran, D. Raible and C. M. Phillips, J. Phys. Chem., 1995, 99, 1166ꢀ1171.
(17). C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale and G. C. Bazan, Adv. Mater., 2011,
23, 2367ꢀ2371.
(18). (a) G. J. Kavarnos and N. J. Turro, Chem. Rev., 1986, 86, 401ꢀ449; (b) V. Balzani, F.
Bolletta, F. Scandola and R. Ballardini, Pure Appl. Chem., 1979, 51, 299ꢀ311.
(19). S. Doose, H. Neuweiler and M. Sauer, Chemphyschem, 2009, 10, 1389ꢀ1398.
(20). (a) T. X. Nguyen, S. Landgraf and G. Grampp, Journal of Photochemistry and
Photobiology B: Biology, 2017, 166, 28ꢀ34; (b) B. Durham, L. P. Pan, J. E. Long and F.
Millett, Biochemistry, 1989, 28, 8659ꢀ8665.
(21). X. Liu, J. Liu, K. Jin, X. Yang, Q. Peng and L. Sun, Tetrahedron, 2005, 61, 5655ꢀ5662.
(22). D. Escudero, Acc. Chem. Res., 2016, 49, 1816ꢀ1824.
(23). G. McLendon, Acc. Chem. Res., 1988, 21, 160ꢀ167.
TOC Graphic
19