4
Figure 1. Docking poses of 3a in (a) SZ2074 mutant of TbSADH and in (b) SZ2172 mutant. The distance between NADPH cofactor and
the carbonyl C-atom of the substrate are highlighted by green dashed lines.
Tetrahedron: Asymmetry 2009, 20, 513-557; (e) Musa, M. M.;
Phillips, R. S. Catal. Sci. Technol. 2011, 1, 1311-1323; (f) Itoh, N.
Appl. Microbiol. Biotechnol. 2014, 98, 3889-3904.
(a) Keinan, E.; Hafeli, E. K.; Seth, K. K.; Lamed, R. J. Am. Chem.
Soc. 1986, 108, 162-169; (b) Lamed, R. J.; Keinan, E.; Zeikus, J.
G. Enzyme Microb. Techol. 1981, 3, 144-148; (c) Burdette, D. S.;
Vieille, C.; Zeikus, J. G. Biochem. J. 1996, 316, 115-122; (d)
Burdette, D. S.; Secundo, F.; Phillips, R. S.; Dong, J.; Scott, R. A.;
Zeikus, J. G. Biochem. J. 1997, 326, 717-724.
Korkhin, Y.; Kalb, A. J.; Peretz, M.; Bogin, O.; Burstein, Y.;
Frolow, F. J. J. Mol. Biol. 1998, 278, 967−981.
Sun, Z.; Lonsdale, R.; Ilie, A.; Li, G.; Zhou, J.; Reetz, M. T. ACS.
Catal. 2016, 6, 1598-1605.
(a) Tandon, V. K.; Vanleusen, A. M.; Wynberg, H. J. Org. Chem.
Conclusion
In conclusion, several robust mutants of TbSADH, previously
3
.
evolved for the asymmetric reduction of the sterically small
5
prochiral ketone 1 with little tradeoff in thermostability, proved
to be active and highly stereoselective in the reduction of a set of
structurally unrelated and sterically more demanding ketones 3a-
g, but not of the extremely bulky benzophenone derivatives 5a-b.
In most cases these variants clearly out-performed WT TbSADH
in terms of conversion and enantioselectivity. Thus, the substrate
scope of this robust ADH has been expanded, while extending
4
.
5.
6
.
1
983, 48, 2767-2769; (b) Nobili, A.; Gall, M. G.; Pavlidis, I. V.;
5
,9a,9b,9h
the list of useful TbSADH mutants.
If stereoselectivity of
Thompson, M. L.; Schmidt, M.; Bornscheuer, U. T. Febs. J. 2013,
280, 3084-3093.
the present mutants utilizing other substrates in future studies
should prove to be insufficient, they can be employed as
templates for further genetic optimization.
7
8
.
.
Review of rational design in protein engineering: Pleiss, J. in
Enzyme Catalysis in Organic Synthesis; Drauz, K.; Gröger, H.;
May, O., Ed.; Wiley−VCH, Weinheim, 2012, Vol. 1, pp. 89-117.
Recent reviews of directed evolution: (a) Bommarius, A. S. Annu.
Rev. Chem. Biomol. Eng. 2015, 6, 319-345; (b) Currin, A.;
Swainston, N.; Day, P. J.; Kell, D. B. Chem. Soc. Rev. 2015, 44,
Acknowledgments
1
172-1239; (c) Denard, C. A.; Ren, H.; Zhao, H. Curr. Opin.
We thank J. G. Zeikus (Michigan State University) for providing
the pADHB1M1-kan plasmid encoding TbSADH. Support from
the Max-Planck-Society is gratefully acknowledged.
Chem. Biol. 2015, 25, 55-64; (d) Gillam, E. M. J.; Copp, J. N.; F.
D. Ackerley, in Methods in Molecular Biology, Vol 1179, Humana
Press, Totowa, NJ, 2014; (e) Goldsmith, M.; Tawfik, D. S.
Methods Enzymol. 2013, 523, 257-283; (f) Brustad, E. M.; Arnold,
F. H. Curr. Opin. Chem. Biol. 2011, 15, 201-210; (g) Reetz, M. T.
Angew. Chem. Int. Ed. 2011, 50, 138-174; (h) Jäckel, C.; Hilvert,
D. Curr. Opin. Biotechnol. 2010, 21, 753-759; (i) Turner, N. J.
Nat. Chem. Biol. 2009, 5, 568-574; (j) Lutz, S.; Bornscheuer, U.
T. Protein Engineering Handbook, Wiley− VCH, Weinheim, 2009.
Examples of protein engineering of ADHs for enhanced
stereoselectivity: (a) Nealon, C. M.; Musa, M. M.; Patel, J. M.;
Phillips, R. S. ACS Catal. 2015, 5, 2100-2114; (b) Xu, G.; Shang,
Y.; Yu, H.; Xu, J. Chem. Commun. 2015, 51, 15728-15731; (c)
Zhang, D.; Chen, X.; Chi, J.; Feng, J.; Wu, Q.; Zhu, D. ACS Catal.
�
These authors contributed equally.
Supplementary Material
9
.
Supplementary data associated with this article can be found, in
the online version, at www.elsevier.com.
References and notes
2
015, 5, 2452-2457; (d) Liang, J.; Lalonde, J.; Borup, B.;
Mitchell, V.; Mundorff, E.; Trinh, N.; Kochrekar, D. A.; Cherat,
R. N.; Pai, G. G. Org. Process Res. Dev. 2010, 14, 193-198; (e)
Spickermann, D.; Hausmann, S.; Degering, C.; Schwaneberg, U.;
Leggewie, C. ChemBioChem. 2014, 15, 2050-2052; (f) Loderer,
C.; Dhoke, G. V.; Davari, M. D.; Kroutil, W.; Schwaneberg, U.;
Bocola, M.; Ansorge-Schumacher, M. B. ChemBioChem 2015, 16,
1
2
.
.
(a) Noyori, R. Angew. Chem.Int. Ed. 2002, 41, 2008-2022; (b)
Sandoval, C. A.; Li, Y.; Ding, K.; Noyori, R. Chem. Asian J.
2
008, 3, 1801-1810; (c) Corey, E. J.; Helal, C. J. Angew. Chem.
Int. Ed. 1998, 37, 1986−2012; (d) Morris, R. H. Chem. Soc. Rev.
009, 38, 2282-2291.
2
Alcohol dehydrogenases (ADHs) as catalysts in asymmetric
1
512-1519; (g) Asako, H.; Shimizu, M.; Itoh, N. Appl. Microbiol.
ketone reduction reviews: (a) Gröger, H.; Hummel, W.; Borchert,
rd
Biotechnol. 2008, 80, 805-812; (h) Agudo, R.; Roiban, G. D.;
Reetz, M. T. J. Am. Chem. Soc. 2013, 135, 1665-1668; (i)
Patrikainen, P.; Niiranen, L.; Thapa, K.; Paananen, P.; Tähtinen,
P.; Mäntsälä, P.; Niemi, J.; Metsä-Ketelä, M. Chem. Biol. 2014,
S.; Kraußer, M. in Enzyme Catalysis in Organic Synthesis, 3
Edition; Drauz, K.; Gröger, H.; May, O., Ed.; Wiley−VCH,
Weinheim, 2012, pp 1035−1110; (b) Götz, K.; Hilterhaus, L.;
rd
Liese, A. in Enzyme Catalysis in Organic Synthesis, 3 Edition;
2
1, 2100-2114; (j) Li, H.; Yang, Y.; Zhu, D.; Hua, L.;
Drauz, K.; Gröger, H.; May, O., Ed.; Wiley−VCH, Weinheim,
Kantardjieff, K. J. Org. Chem. 2010, 75, 7559-7564.
2
2
012, pp. 1205−1223; (c) Woodley, J. M. Trends Biotechnol.
008, 26, 321-327; (d) Matsuda, T.; Yamanaka, R.; Nakamura, K.
1
0. Sun, Z.; Lonsdale, R.; Wu, L.; Li, G.; Li, A.; Wang, J.; Zhou, J.;
Reetz, M. T. ACS Catal. 2016, 6, 1590-1597.