Indole Hydroxylation by P450 BM-3
299
8) Shimada, T., and Guengerich, F. P., Evidence for
cytochrome P-450NF, the nifedipine oxidase, being the
principal enzyme involved in the bioactivation of
aflatoxins in human liver. Proc. Natl. Acad. Sci.
U.S.A., 86, 462–465 (1989).
9) Koley, A. P., Buters, J. T. M., Robinson, R. C.,
Markowitz, A., and Friedman, F. K., Differential
mechanisms of cytochrome P450 inhibition and activa-
tion by ꢁ-naphthoflavone. J. Biol. Chem., 272, 3149–
3152 (1997).
10) Shou, M., Grogan, J., Mancewicz, J. A., Krausz, K. W.,
Gonzalez, F. J., Gelboin, H. V., and Korzekwa, K. R.,
Activation of CYP3A4: evidence for the simultaneous
binding of two substrates in a cytochrome P450 active
site. Biochemistry, 33, 6450–6455 (1994).
ulation by CuOOH, but greatly increased its affinity to
indole with a Km value of 0.75 mM and also the coupling
efficiency of NADPH-consumption and indole hydroxy-
lation.
Studies on substrate interactions with P450 BM-3,
combined with structural analysis, will provide infor-
mation to clarify the mechanisms of the substrate
binding and hydroxylation specificity in a P450 reaction.
Such information will be very useful for the redesign of
novel substrate specificity of a P450 and the P450
related drug design.
Acknowledgments
11) Kerr, B. M., Thummel, K. E., Wurden, C. J., Klein, S.
M., Kroetz, D. L., Gonzalez, F. J., and Levy, R. H.,
Human liver carbamazepine metabolism. Role of
CYP3A4 and CYP2C8 in 10,11-epoxide formation.
Biochem. Pharmacol., 47, 1969–1979 (1994).
12) Li, Y., Wang, E., Patten, C. J., Chen, L., and Yang, C.,
Effects of flavonoids on cytochrome P450-dependent
acetaminophen metabolism in rats and human liver
microsomes. Drug Metab. Dispos., 22, 566–571 (1994).
13) Cupp-Vickery, J., Anderson, R., and Hatziris, Z., Crystal
structures of ligand complexes of P450eryF exhibiting
homotropic cooperativity. Proc. Natl. Acad. Sci. U.S.A.,
97, 3050–3055 (2000).
14) Ruettinger, R. T., Wen, L. P., and Fulco, A. J., Coding
nucleotide, 50 regulatory, and deduced amino acid
sequences of P-450BM-3, a single peptide cytochrome
P-450: NADPH-P-450 reductase from Bacillus mega-
terium. J. Biol. Chem., 264, 10987–10995 (1989).
15) Narhi, L. O., and Fulco, A. J., Characterization of a
catalytically self-sufficient 119,000-Dalton cytochrome
P450 monoxygenase induced by barbiturates in Bacillus
megaterium. J. Biol. Chem., 261, 7160–7169 (1986).
16) Boddupalli, S. S., Estabrook, R. W., and Peterson, J. A.,
Fatty acid monooxygenation by cytochrome P450 BM-3.
J. Biol. Chem., 265, 4233–4239 (1990).
17) Graham-Lorence, S. E., Truan, G., Peterson, J. A., Falck,
J. R., Wei, S., Helvig, C., and Capdevila, J. H., An active
site substitution, F87V, converts cytochrome P450BM-3
into a regio- and stereoselective (14S,15R)-arachidonic
acid epoxygenase. J. Biol. Chem., 272, 1127–1135
(1997).
The authors wish to thank Professor T. Sakaki of
Toyama Prefectural University for helpful discussions.
Q. S. Li is a post-doctoral fellow (no. P99115) supported
by the Japan Society for the Promotion of Science
(JSPS). This work was supported in part by the Project
for the Development of a Technological Infrastructure
for Industrial Bioprocesses on R&D of New Industrial
Science and Technology Frontiers (to SS) of the New
Energy and Industrial Technology Development Organ-
ization (NEDO) of Japan, and by COE for Microbial-
Process Development Pioneering Future Production
Systems (the COE program of the Ministry of Educa-
tion, Culture, Sports, Science, and Technology of
Japan).
References
1) Joo, H., Lin, Z., and Arnold, F. H., Laboratory evolution
of peroxide-mediated cytochrome P450 hydroxylation.
Nature, 339, 670–673 (1999).
2) Schwab, G. E., Raucy, J. L., and Johnson, E. F.,
Modulation of rabbit and human hepatic cytochrome P-
450-catalyzed steroid hydroxylations by alpha-naphtho-
flavone. Mol. Pharmacol., 33, 493–499 (1988).
3) He, Y. A., He, Y. Q., Szklarz, G. D., and Halpert, J. R.,
Identification of three key residues in substrate recog-
nition site 5 of human cytochrome P450 3A4 by cassette
and site-directed mutagenesis. Biochemistry, 36, 8831–
8839 (1997).
4) Harlow, G. R., and Halpert, J. R., Alanine-scanning
mutagenesis of a putative substrate recognition site in
human cytochrome P450 3A4. Role of residues 210 and
211 in flavonoid activation and the substrate specificity.
J. Biol. Chem., 272, 5396–5402 (1997).
5) Ueng, Y. F., Kuwabara, T., Chun, Y. J., and Guengerich,
F. P., Cooperativity in oxidations catalyzed by cyto-
chrome P450 3A4. Biochemistry, 36, 370–381 (1997).
6) Kerlan, V., Dreano, Y., Bercovici, J. P., Beaune, P. H.,
Floch, H. H., and Berthou, F., Nature of cytochromes
P450 involved in the 2-/4-hydroxylations of estradiol in
human liver microsomes. Biochem. Pharmacol., 44,
1745–1756 (1992).
18) Li, H., and Poulos, T. L., The structure of the
cytochrome p450BM-3 haem domain complexed with
the fatty acid structure, palmitoleic acid. Nat. Struct.
Biol., 4, 140–146 (1997).
19) Li, Q. S., Schwaneberg, U., Fischer, F., and Schmid, R.
D., Directed evolution of the fatty acid hydroxylase
P450BM-3 into an indole-hydroxylating catalyst. Chem.
Eur. J., 6, 1531–1535 (2000).
20) Li, Q. S., Ogawa, J., and Shimizu, S., Critical role of the
residue size at position 87 in H2O2-dependent substrate
hydroxylation activity and H2O2 inactivation of cyto-
chrome P450 BM-3. Biochem. Biophys. Res. Commun.,
280, 1258–1261 (2001).
7) Ueng, Y. F., Shimada, T., Yamazaki, H., and Guenger-
ich, F. P., Oxidation of aflatoxin B1 by bacterial
recombinant human cytochrome P450 enzymes. Chem.
Res. Toxicol., 8, 218–225 (1995).
21) Harlow, G. R., and Halpert, J. R., Analysis of human
cytochrome P450 3A4 cooperativity: construction and
characterization of a site-directed mutant that displays
hyperbolic steroid hydroxylation kinetics. Proc. Natl.