Organic Letters
Letter
similar polarity, separation of both compounds by silica gel flash
chromatography was tedious and difficult.
intact. This methodology is useful for the construction of a
ProTide library with structural variation of the nucleobase
moiety.
In an attempt to avoid the formation of this side product, we
ran the same reaction in a solvent mixture of 2 N ammonia in 2-
propanol and dichloromethane and found that the reaction
proceeded sluggishly. However, running the reaction in 2 N
ammonia in 2-propanol (without dichloromethane) for 48 h at
room temperature (entry d) led to full deprotection of the acetyl
groups without formation of transesterification-based products.
In an effort to shorten the reaction time, a mixture of 25%
ammonia in water and 2-propanol (1:2 volume ratio) was
evaluated (entry e). The reaction was run at room temperature,
and the acetyl groups were completely deprotected within 2 h to
yield the desired product in good yield. These optimized reaction
conditions were applied to the protected ProTides 6b−m (Table
3). The procedure works very well for most of the substrates with
isolated yields of 80% or more.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and spectral data of compounds
2, 5, 6a−m, and 7a−l (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
Table 3. Selective O-Deacetylation of ProTides 6b−m
REFERENCES
■
(1) Jordheim, L. P.; Durantel, D.; Zoulim, F.; Dumontet, C. Nat. Rev.
Drug Discovery 2013, 12, 447−464.
(2) Parker, W. B. Chem. Rev. 2009, 109, 2880−2893.
(3) Thornton, P.; Kadri, H.; Miccoli, A.; Mehellou, Y. J. Med. Chem.
(4) Mehellou, Y.; Balzarini, J.; McGuigan, C. ChemMedChem 2009, 4,
1779−1791.
(5) (a) Ray, A. S.; Fordyce, M. W.; Hitchcock, M. J. M. Antiviral Res.
2016, 125, 63−70. (b) Saboulard, D.; Naesens, L.; Cahard, D.; Salgado,
A.; Pathirana, R.; Velazquez, S.; McGuigan, C.; De Clercq, E.; Balzarini,
J. Mol. Pharmacol. 1999, 56, 693−704.
yield
entry substrate
B
product
(%)
a
b
c
d
e
f
6b
6c
6d
6e
6f
6-azauridine (N-1 isomer)
7b
7c
7d
7e
7f
83
85
80
86
90
82
86
81
80
87
5-fluorocytosine (N-1 isomer)
5-fluorouracil (N-1 isomer)
5-fluorouracil (N-3 isomer)
5-aminouridine (N-3 isomer)
2-thiouridine (N-1 isomer)
2-thiouridine (N-3 isomer)
6-chloropurine (N-9 isomer)
6-chloro-2-aminopurine (N-9 isomer)
4-amino-6-methyl-7-oxopteridine
(6) Sofia, M. J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.;
Rachakonda, S.; Reddy, G.; Ross, B. S.; Wang, P.; Zhang, H.; Bansal, S.;
Espiritu, C.; Keilman, M.; Lam, A. M.; Micolochick Steuer, H. M.; Niu,
C.; Otto, M. J.; Furman, P. A. J. Med. Chem. 2010, 53, 7202−7218.
(7) (a) Slusarczyk, M.; Lopez, M. H.; Balzarini, J.; Mason, M.; Jiang, W.
G.; Blagden, S.; Thompson, E.; Ghazaly, E.; McGuigan, C. J. Med. Chem.
2014, 57, 1531−1542. (b) McGuigan, C.; Murziani, P.; Slusarczyk, M.;
Gonczy, B.; Vande Voorde, J.; Liekens, S.; Balzarini, J. J. Med. Chem.
2011, 54, 7247−7258.
6g
6h
6i
7g
7h
7i
g
h
i
6j
7j
j
6k
6l
7k
7l
(8) Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.;
Schinazi, R. F. Chem. Rev. 2014, 114, 9154−9218.
a
k
methyl 1H-1,2,4-triazole-3-
85
carboxylate
(9) (a) Maiti, M.; Maiti, M.; Rozenski, J.; De Jonghe, S.; Herdewijn, P.
Org. Biomol. Chem. 2015, 13, 5158−5174. (b) Gao, L. J.; De Jonghe, S.;
Daelemans, D.; Herdewijn, P. Bioorg. Med. Chem. Lett. 2016, 26, 2142−
2146. (c) Maiti, M.; Gao, L. J.; Huang, C.; Ptak, R. G.; Murray, M. G.; De
Jonghe, S.; Herdewijn, P. Org. Biomol. Chem. 2016, 14, 8743−8757.
(10) Beigelman, L.; Mikhailov, S. N. Carbohydr. Res. 1990, 203, 324−
329.
(11) Vorbruggen, H.; Ruh-Pohlenz, C. Org. React. 1999, 1−630.
(12) (a) Moreau, C.; Kirchberger, T.; Zhang, B.; Thomas, M. P.;
Weber, K.; Guse, A. H.; Potter, B. V. L. J. Med. Chem. 2012, 55, 1478−
1489. (b) Moreau, C.; Kirchberger, T.; Swarbrick, J. M.; Bartlett, S. J.;
Fliegert, R.; Yorgan, T.; Bauche, A.; Harneit, A.; Guse, A. H.; Potter, B.
V. L. J. Med. Chem. 2013, 56, 10079−10102.
(13) Schinazi, R. F.; Cho, J. H.; Zhou, L.; Zhang, H.; Pradere, U.; Coats,
S. J. Patent WO2012/158811, 2012.
(14) Bio, M. M.; Xu, F.; Waters, M.; Williams, J. M.; Savary, K. A.;
Cowden, C. J.; Yang, C.; Buck, E.; Song, Z. J.; Tschaen, D. M.; Volante,
R. P.; Reamer, R. A.; Grabowski, E. J. J. J. Org. Chem. 2004, 69, 6257−
6266.
l
6m
3-cyano-2-oxopyridine
complex reaction
mixture
a
Yield of product 7l where B = 1,2,4-triazole-3-carboxamide.
In some cases, the formation of overreacted products (due to
hydrolysis of the isoamyl esters) was observed on TLC. This was,
however, not a major issue since they can be often easily
separated from the desired compound by flash chromatography
on silica gel. It is noteworthy that the chlorine at position 6 of the
purine moiety of compounds 6i and 6j is stable under these
reaction conditions, affording ProTides 7i and 7j, whereas the
methyl ester on the imidazole ring of 6j was transformed into the
corresponding carboxamide. On the other hand, for the pyridine
analogue 6m, no desired product was isolated due to the
decomposition of the substrate under the reaction conditions.
In summary, a conceptually new method for the construction
of (aryloxy)phosphoramidate nucleoside prodrugs is presented.
It involves the synthesis of ProTide sugar 5 as a key building
block that can be used for coupling with a number of
nucleobases, affording exclusively the β-nucleosides, although
mixtures of regioisomers were formed in some cases. Finally, a
method has been elaborated for the selective hydrolysis of the
acetoxy groups on the sugar moiety, leaving the prodrug moiety
D
Org. Lett. XXXX, XXX, XXX−XXX