Oxidation of Sulfides with an SiO2-Supported Peracid in Supercritical CO2
W. Leitner), Wiley-VCH, Weinheim, New York, 1999; d) Chem.
Rev. 1999, 99, thematic issue; e) M. McHugh, V. Krukonis,
Supercritical Fluid Extraction, 2nd ed., Butterworth-Heinem-
ann, Boston, 1994.
valve were regulated to achieve steady continuous flow conditions
at 250 bar. The CO2 flow at the outlet of the system was monitored
with a bubble flow meter. The system was left to operate for 3 h.
The inlet valve was then closed, and the system was allowed to
[2]
See, for instance: a) R. Mello, A. Olmos, J. Parra-Carbonell,
M. E. González-Núñez, G. Asensio, Green Chem. 2009, 11,
994–999; b) F. Jutz, J. D. Grunwaldt, A. Baiker, Ind. Eng.
Chem. Res. 2008, 47, 4561–4585; c) F. Zayed, L. Greiner, P. S.
Schulz, A. Lapkin, W. Leitner, Chem. Commun. 2008, 79–81;
d) T. Seki, J. D. Grunwaldt, N. vanVegten, A. Baiker, Adv.
Synth. Catal. 2008, 350, 691–705; e) Z. Hou, N. Theyssen, W.
Leitner, Green Chem. 2007, 9, 127–132; f) M. I. Burguete, A.
Cornejo, E. García-Verdugo, M. J. Gil, S. V. Luis, J. A.
Mayoral, V. Martínez-Merino, M. Sokolova, J. Org. Chem.
2007, 72, 4344–4350; g) P. Clark, M. Poliakoff, A. Wells, Adv.
Synth. Catal. 2007, 349, 2655–2659; h) T. Seki, J. D. Grun-
waldt, A. Baiker, Chem. Commun. 2007, 3562–3564; i) P. Ste-
phenson, B. Kondor, P. Licence, K. Scovell, S. K. Ross, M. Pol-
iakoff, Adv. Synth. Catal. 2006, 348, 1605–1610; j) M. Caravati,
J. D. Grunwaldt, A. Baiker, Appl. Catal. A 2006, 50, 50–56; k)
M. E. González-Núñez, R. Mello, A. Olmos, G. Asensio, J.
Org. Chem. 2006, 71, 6432–6436; l) M. E. González-Núñez, R.
Mello, A. Olmos, R. Acerete, G. Asensio, J. Org. Chem. 2006,
71, 1039–1042.
a) A. Salameh, A. Baudouin, J.-M. Basset, C. Copéret, Angew.
Chem. Int. Ed. 2008, 47, 2117–2120; b) R. Berthoud, A. Bau-
douin, B. Fenet, W. Lukens, K. Pelzer, J.-M. Basset, J.-P. Candy,
C. Copéret, Chem. Eur. J. 2008, 14, 3523–3526; c) D. A. Ruddy,
T. D. Tilley, Chem. Commun. 2007, 3350–3352; d) R. L. Brut-
chey, D. A. Ruddy, L. K. Andersen, T. D. Tilley, Langmuir
2005, 21, 9576–9583; e) R. Anwander, Chem. Mater. 2001, 13,
4419–4438; f) J. Bu, H.-K. Rhee, Catal. Lett. 2000, 66, 245–
249; g) M. B. Dámore, S. Schwarz, Chem. Commun. 1999, 121–
122; h) J.-M. Basset, F. Lefebvre, C. Santini, Coord. Chem. Rev.
1998, 178–180, 1703–1723; i) A. Corma, M. Domine, J. A.
Gaona, J. L. Jordá, M. T. Navarro, F. Rey, J. Pérez-Pariente, J.
Tsuji, B. McCulloch, L. T. Nemeth, Chem. Commun. 1998,
2211–2212; j) T. Tatsumi, K. A. Koyano, N. Igarashi, Chem.
Commun. 1998, 325–326; k) S. A. Holmes, F. Quignard, A.
Choplin, R. Teissier, J. Kervennal, J. Catal. 1998, 176, 182–
191.
depressurize. The trap was warmed to room temperature, and the
colorless residue was dissolved in deuterated chloroform and ana-
1
lyzed with the aid of GC, GC–MS, H, and 13C NMR techniques.
The solid reagent recovered from the column was washed four
times with 15 mL of dichloromethane in a round-bottomed flask
with magnetic stirring. The filtered solution was analyzed by means
of GC and then concentrated under vacuum at 0 °C.
Oxidation of Sulfides (1) with [2-Percarboxyethyl]-Functionalized
Silica (4) in scCO2. Method B. General Procedure: Methyl phenyl
sulfide (1a) (0.12 mL, 1 mmol) was placed in a 0.2 mL loop of a
Rheodyne valve, which was connected through suitable fittings to
a stainless steel 8 mm ID column packed with anhydrous silica-
supported peracid 4 (0.83 g, 1.2 mmolg–1, 1 equiv.). Two filters
placed at either end of the column prevented displacement of the
solid reagent throughout the experiment. The outlet of the column
was connected to a high-pressure micrometric valve, which was
connected to a trap cooled with a dry-ice bath through a 1/8 inch
Teflon tubing. The pressure in the trap was equilibrated with a flow
[3]
of nitrogen. The inlet of the Rheodyne valve was connected with a
high-pressure valve to a 250 mL autoclave set at 40 °C. The auto-
clave was closed, charged with CO2 and pressurized to 100 bar.
Both the Rheodyne loop and the column were then placed into a
water bath heated to 40 °C, and the system was allowed to pressur-
ize by carefully opening the inlet valve. The stroke volume of the
pump and the aperture of the high-pressure micrometric outlet
valve were regulated to achieve steady continuous flow conditions
at 100 bar. The CO2 flow at the outlet of the system was monitored
with a bubble flow meter. The substrate was injected, and the sys-
tem was left to operate for 3 h. Afterwards, the pressure was raised
to 250 bar, and the CO2 flow was fixed again to 0.10–0.12 mL of
scCO2 min–1. Six portions of 0.2 mL of methanol were successively
injected through the Rheodyne valve at 10 min intervals. The sys-
tem was then allowed to depressurize. The trap was warmed to
[4]
a) A. Lambert, J. A. Elings, D. J. Macquarrie, G. Carr, J. H.
Clark, Synlett 2000, 7, 1052–1054; b) D. J. Macquarrie, D. B.
Jackson, J. E. G. Mdoe, J. H. Clark, New J. Chem. 1999, 23,
539–544; c) J. A. Elings, R. Ait-Meddour, J. H. Clark, D. J.
Macquarrie, Chem. Commun. 1998, 2707–2708.
R. Mello, A. Olmos, T. Varea, M. E. González-Núñez, Anal.
Chem. 2008, 80, 9355–9359.
a) J. Skerjanc, A. Regent, B. Plesnicar, J. Chem. Soc., Chem.
Commun. 1980, 1007–1009; b) R. Curci, R. A. DiPrete, J. O.
Edwards, G. Modena, J. Org. Chem. 1970, 35, 740–745; c) C. G.
Overberger, R. W. Cummins, J. Am. Chem. Soc. 1953, 75,
4250–4254.
room temperature, and the solution was concentrated under vac-
uum. The colorless residue was dissolved in deuterated chloroform
and analyzed with the aid of GC, GC–MS, 1H, and 13C NMR
techniques. The solid reagent recovered from the column was
washed four times with 15 mL of dichloromethane in a round-bot-
tomed flask with magnetic stirring. The filtered solution was ana-
[5]
lyzed by means of GC and then concentrated under vacuum at
0 °C.
[6]
Supporting Information (see footnote on the first page of this arti-
1
cle): GC–MS, H and 13C NMR spectra of the reaction mixtures.
[7]
R. D. Bach, J. E. Winter, J. J. W. McDouall, J. Am. Chem. Soc.
1995, 117, 8586–8593.
Acknowledgments
[8]
I. N. Levine, Physical Chemistry, 4th ed., McGraw-Hill, New
York, 1995.
Financial support from the Spanish Dirección General de In-
vestigación and Fondos FEDER (CTQ2007-65251/BQU) and Con-
solider Ingenio 2010 (CSD2007-00006), is gratefully acknowledged.
A. O, and A. A. A. thank the Spanish Ministerio de Educación y
Ciencia for fellowships. We thank Solvay Química S.L. for a gener-
ous gift of 70% hydrogen peroxide. We also thank the SCSIE (Uni-
versidad de Valencia) for allowing us access to their instruments
and facilities.
[9]
a) S.-C. Li, L.-C. Chu, X.-Q. Gong, U. Diebold, Science 2010,
328, 882–884; b) F. Pizzitutti, M. Marchi, F. Sterpone, P. J. Ros-
sky, J. Phys. Chem. B 2007, 111, 7584–7590; c) R. Valiullin, P.
Kortunov, J. Kärger, V. Timoshenko, J. Phys. Chem. B 2005,
109, 5746–5752; d) J. P. Pevlin, N. Uras, J. Sadlej, V. Buch, Na-
ture 2002, 417, 269–271; e) E. Gedat, A. Schreiber, G. H. Find-
enegg, I. Shenderovich, J.-H. Limbach, G. Buntkowsky, Magn.
Reson. Chem. 2001, 39, 149–157; f) M. Bjelopavlic, P. K. Singh,
H. El-Shall, B. M. Moudgil, J. Colloid Interface Sci. 2000, 226,
159–165.
[1] a) W. Leitner, Acc. Chem. Res. 2002, 35, 746–756; b) S. Wells,
J. M. DeSimone, Angew. Chem. Int. Ed. 2001, 40, 519–527; c)
Chemical Synthesis Using Supercritical Fluids (Eds.: P. Jessop,
[10]
a) C. Graham, D. A. Imrie, R. E. Raab, Mol. Phys. 1998, 93,
49–56; b) J. H. Williams, Acc. Chem. Res. 1993, 26, 593–598;
Eur. J. Org. Chem. 2010, 6200–6206
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6205