Polarity Enhancement of Arylboronate Esters
the boron atom participates in the aromatic system. Azo
compounds,5 Schiff bases,6 stilbenes,7 and related compounds8
were reported with directly bound boronic acid or boronate ester
moieties. Derivatives of triarylboranes that are essential com-
ponents of chromophoric π-systems (stilbenes, biphenyls,
acetylenes, thiophene derivatives)9,10 have been also well
established as new materials in the field of organic light-emitting
devices (OLED),9 optoelectronic, and two-photon materials.10
Another scope of application of boron-containing chromophoric
π-systems is the area of selective anion sensing.11 Intensive
research was focused on the field of non-boron-containing
fluoride ion sensors that is especially based on the strong
hydrogen-bond accepting ability of the fluoride ion.12 However,
fluoride ion sensing with organoboron compounds is still a
promising field of science, including arylboronic acids, aryl-
boronate esters, and arylboranes.13-16 The strong interaction of
three-coordinate boron compounds as “hard” Lewis acids and
fluoride ions as “hard” Lewis bases is one of the origins for the
high selectivity of boron-containing sensing materials toward
fluoride ions. Hitherto manifold detection methods were devel-
oped utilizing different fluoride-driven responses. These ap-
proachesusechangesofthefluorescence13 andthecolorimetric13d,14
behavior. Also fluoride sensors based on redox reactions9j,15 and
probes using phosphorescence16 were reported. Furthermore,
sensors based on boron-containing subphthalocyanines are
known.17 In addition, approaches related to fluoride-sensing exist
for the detection of cyanide ions.17a,18 Arylboronic acids are
mostly reported as boron-containing fluoride sensors, but they
show multiple equilibria due to the formation of various fluoro-
borate species.13a,b,g They also have the disposition to form cyclic
boroxines, which implies difficulties during syntheses and
analyses. These disadvantages can be circumvented by the
utilization of arylboronate esters13e,f,h,15c as protecting groups
such as pinacol cyclic esters.13h
The coordination of Lewis bases such as amines,19 F-, HO-,
and CN- at the planar boron atom alters the hybridization from
sp2 to sp3 and, hence, changes the electronic character. Up to
now, Hammett constant characteristics of the electronic effect
of boron-containing substituents are rarely reported for related
types of moieties including sp2 and sp3-hybridized boron
atoms.20 This is particularly true for fluoro-adducts of arylbo-
ronate esters. To display the difference between the electronic
effects of the two different states of hybridization, the Hammett
constants of the boronic acid moiety -B(OH)2 (σp ) 0.12; σm
(6) (a) Norman, D.; Edwards, J.; Vogels, C.; Decken, A.; Westcott, S.
Can. J. Chem. 2002, 80, 31-40. (b) Vogels, C.; Nikolcheva, L.; Norman,
D.; Spinney, H.; Decken, A.; Baerlocher, M.; Baerlocher, F.; Westcott, S.
Can. J. Chem. 2001, 79, 1115-1123. (c) Zhang, H.; Norman, D.; Wentzell,
T.; Irving, A.; Edwards, J.; Wheaton, S.; Vogels, C.; Westcott, S. Transition
Met. Chem. 2005, 30, 63-68.
(7) (a) Shinmori, H.; Takeuchi, M.; Shinkai, S. Tetrahedron 1995, 51,
1893-1902. (b) DiCesare, N.; Lakowicz, J. J. Photochem. Photobiol. A
2001, 143, 39-47. (c) DiCesare, N.; Lakowicz, J. J. Phys. Chem. A 2001,
105, 6834-6840. (d) Baumgarten, M.; Yu¨ksel, T. Phys. Chem. Chem. Phys.
1999, 1, 1699-1706. (e) Larsen, M.; Krebs, F.; Jørgensen, M.; Harrit, N.
J. Org. Chem. 1998, 63, 4420-4424.
) -0.01)20 and its boronate form -B(OH)3 (σp ) -0.44; σm
-
) -0.48)20 can be taken into account. However, the latter form
is marked as a group with one of the highest field effects/
inductive effects (F ) -0.42).20 This effect can also be applied
to arylboronate esters and their fluoride adducts, but the exact
values will surely differ from the aforementioned ones. The σp
and σm constants of alkyl esters of boronic acids as substituent,
(8) (a) DiCesare, N.; Lakowicz, J. Chem. Commun. 2001, 2022-2023.
(b) Sato, K.; Sone, A.; Arai, S.; Yamagishi, T. Heterocycles 2003, 61, 31-
38. (c) Badugu, R.; Lakowicz, J.; Geddes, C. Anal. Chem. 2004, 76, 610-
618.
(9) (a) Yamaguchi, S.; Shirasaka, T.; Tamao, K. Org. Lett. 2000, 2,
4129-4132. (b) Jia, W.; Song, D.; Wang, S. J. Org. Chem. 2003, 68, 701-
705. (c) Jia, W.; Bai, D.; McCormick, T.; Liu, Q.; Motala, M.; Wang, R.;
Seward, C.; Tao, Y.; Wang, S. Chem. Eur. J. 2004, 10, 994-1006. (d) Jia,
W.; Moran, M.; Yuan, Y.; Hong Lu, Z.; Wang, S. J. Mater. Chem. 2005,
15, 3326-3333. (e) Mazzeo, M.; Vitale, V.; Della Sala, F.; Anni, M.;
Barbarella, G.; Favaretto, L.; Sotgiu, G.; Cingolani, R.; Gigli, G. AdV. Mater.
2005, 17, 34-39. (f) Jia, W.; Feng, X.; Bai, D.; Lu, Z.; Wang, S.;
Vamvounis, G. Chem. Mater. 2005, 17, 164-170. (g) Stahl, R.; Lambert,
C.; Kaiser, C.; Wortmann, R.; Jakober, R. Chem. Eur. J. 2006, 12, 2358-
2370. (h) Lequan, M.; Lequan, R.; Chane-Ching, K.; Callier, A. AdV. Mater.
Opt. Electron. 1992, 1, 243-247. (i) Yamaguchi, S.; Akiyama, S.; Tamao,
K. J. Am. Chem. Soc. 2000, 122, 6335-6336. (j) Nicolas, M.; Fabre, B.;
Marchand, G.; Simonet, J. Eur. J. Org. Chem. 2000, 1703-1710.
(10) (a) Liu, Z.; Fang, Q.; Wang, D.; Cao, D.; Xue, G.; Yu, W.; Lei, H.
Chem. Eur. J. 2003, 9, 5074-5084. (b) Liu, Z.; Fang, Q.; Cao, D.; Wang,
D.; Xu, G. Org. Lett. 2004, 6, 2933-2936. (c) Liu, Z.; Shi, M.; Li, F.;
Fang, Q.; Chen, Z.; Yi, T.; Huang, C. Org. Lett. 2005, 7, 5481-5484. (d)
Cao, D.; Liu, Z.; Fang, Q.; Xu, G.; Xue, G.; Liu, G.; Yu, W. J. Organomet.
Chem. 2004, 689, 2201-2206. (e) Charlot, M.; Porres, L.; Entwistle, C.;
Beeby, A.; Marder, T.; Blanchard-Desce, M. Phys. Chem. Chem. Phys. 2005,
7, 600-606. (f) Yuan, Z.; Entwistle, C.; Collings, J.; Albesa-Jove´, D.;
Batsanov, A.; Howard, J.; Taylor, N.; Kaiser, H.; Kaufmann, D.; Poon, S.;
Wong, W.; Jardin, C.; Fathalla, S.; Boucekkine, A.; Halet, J.; Marder, T.
Chem. Eur. J. 2006, 12, 2758-2771.
(11) For reviews on anion sensing see: (a) de Silva, A.; Gunaratne, H.;
Gunnlaugsson, T.; Huxley, A.; McCoy, C.; Rademacher, J.; Rice, T. Chem.
ReV. 1997, 97, 1515-1566. (b) Beer, P.; Gale, P. Angew. Chem. Int. Ed.
2001, 40, 486-516. (c) Martinez-Manez, R.; Sancenon, F. Chem. ReV. 2003,
103, 4419-4476.
(12) (a) Boiocchi, M.; Del Boca, L.; Esteban-Gomez, D.; Fabbrizzi, L.;
Licchelli, M.; Monzani, E. J. Am. Chem. Soc. 2004, 126, 16507-16514.
(b) Pohl, R.; Aldakov, D.; Pavel, K.; Jursikova, K.; Marquez, M.;
Anzenbacher, P. Chem. Commun. 2004, 1282-1283. (c) Cho, E.; Ryu, B.;
Lee, Y.; Nam, K. Org. Lett. 2005, 7, 2607-2609. (d) Peng, X.; Wu, Y.;
Fan, J.; Tian, M.; Han, K. J. Org. Chem. 2005, 70, 10524-10531. (e)
Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M. J. Org. Chem. 2005, 70,
5177-5720. (f) Lin, Z.; Ou, S.; Duan, C.; Zhang, B.; Bai, Z. Chem.
Commun. 2006, 624-626.
(13) (a) Cooper, C.; Spencer, N.; James, T. Chem. Commun. 1998, 1365-
1366. (b) DiCesare, N.; Lakowicz, J. Anal. Biochem. 2002, 301, 111-116.
(c) Yamaguchi, S.; Shirasaka, T.; Akiyama, S.; Tamao, K. J. Am. Chem.
Soc. 2002, 124, 8816-8817. (d) Kubo, Y.; Yamamoto, M.; Ikeda, M.;
Takeuchi, M.; Shinkai, S.; Yamaguchi, S.; Tamao, K. Angew. Chem., Int.
Ed. 2003, 42, 2036-2040. (e) Arimori, S.; Davidson, M.; Fyles, T.; Hibbert,
T.; James, T.; Kociok-Ko¨hn, G. Chem. Commun. 2004, 1640-1641. (f)
Kubo, Y.; Kobayashi, A.; Ishida, T.; Misawa, Y.; James, T. Chem. Commun.
2005, 2846-2848. (g) Badugu, R.; Lakowicz, J.; Geddes, C. Sens. Actuators,
B 2005, 104, 103-110. (h) Neumann, T.; Dienes, Y.; Baumgartner, T. Org.
Lett. 2006, 8, 495-497. (i) Shiratori, H.; Ohno, T.; Nozaki, K.; Osuka, A.
Chem. Commun. 1999, 2181-2182. (j) Liu, X.; Bai, D.; Wang, S. Angew.
Chem., Int. Ed. 2006, 45, 5475-5478. (k) Parab, K.; Venkatasubbaiah, K.;
Ja¨kle, F. J. Am. Chem. Soc. 2006, 128, 12879-12885. (k) Yuchi, A.; Tatebe,
A.; Kani, S.; James, T. Bull. Chem. Soc. Jpn. 2001, 74, 509-510. (l) Swamy,
K.; Ju Lee, Y.; Na Lee, H.; Chun, J.; Kim, Y.; Kim, S.; Yoon, J. J. Org.
Chem. 2006, 71, 8626-8628.
(14) (a) Ward, C.; Patel, P.; James, T. Chem. Lett. 2001, 406-407. (b)
Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2001, 123,
11372-11375. (c) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Organomet.
Chem. 2002, 652, 3-9. (d) Sole, S.; Gabba¨ı, F. Chem. Commun. 2004,
1284-1285. (e) Hudnall, T.; Melaimi, M.; Gabba¨ı, F. Org. Lett. 2006, 8,
2747-2749.
(15) (a) Dusemund, C.; Sandanayake, K.; Shinkai, S. J. Chem. Soc.,
Chem. Commun. 1995, 333-334. (b) Yamamoto, H.; Ori, A.; Ueda, K.;
Dusemund, C.; Shinkai, S. Chem. Commun. 1996, 407-408. (c) Aldridge,
S.; Bresner, C.; Fallis, I.; Coles, S.; Hursthouse, M. Chem. Commun. 2002,
740-741.
(16) Melaimi, M.; Gabba¨ı, F. J. Am. Chem. Soc. 2005, 127, 9680-9681.
(17) (a) Ros-Lis, J.; Martinez-Manez, R.; Soto, J. Chem. Commun. 2005,
5260-5262. (b) Xu, S.; Chen, K.; Tian, H. J. Mater. Chem. 2005, 15, 2676-
2680.
(18) (a) Badugu, R.; Lakowicz, J.; Geddes, C. J. Am. Chem. Soc. 2005,
127, 3635-3641. (b) Badugu, R.; Lakowicz, J.; Geddes, C. Dyes Pigm.
2005, 64, 49-55.
(19) (a) Bosch, L.; Fyles, T.; James, T. Tetrahedron 2004, 60, 11175-
11190. (b) Zhu, L.; Shabbir, S.; Gray, M.; Lynch, V.; Sorey, S.; Anslyn, E.
J. Am. Chem. Soc. 2006, 128, 1222-1232 and references therein.
(20) Hansch, C.; Leo, A.; Taft, R. Chem. ReV. 1991, 91, 165-195.
J. Org. Chem, Vol. 72, No. 12, 2007 4329