10.1002/anie.201902838
Angewandte Chemie International Edition
COMMUNICATION
[4]
[5]
a) M. Wasa, K. M. Engle, J.-Q. Yu, Isr. J. Chem. 2010, 50, 605-616; b)
K. S. L. Chan, M. Wasa, L. Chu, B. N. Laforteza, M. Miura, J.-Q. Yu, Nat.
Chem. 2014, 6, 146-150; c) J. E. Spangler, Y. Kobayashi, P. Verma, D.-
H. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2015, 137, 11876-11879; d) Q.
Shao, J. He, Q.-F. Wu, J.-Q. Yu, ACS Catal. 2017, 7, 7777-7782; e) Q.
Shao, Q.-F. Wu, J. He, J.-Q. Yu, J. Am. Chem. Soc. 2018, 140, 5322-
5325.
acyclic sidechains could be incorporated. Generally, n-alkyl
substituents were not tolerated, though an N-benzyl derivative
gave a moderate yield of the arylated product (14j, 43%). Various
substituents could be tolerated along the activating chain,
including benzoate, methyl ether and phthalimide groups (14k–
m). A substrate without β-branching gave no conversion to the
corresponding arylated product (14n), whereas a substrate
derived from the non-natural diastereomer of isoleucine gave an
average yield in the reaction (14o, 45%). A valinol derivative was
also suitable and gave 14p as a mixture of diastereomers and
mono-/di-arylated products (60% by NMR, 2:1 mono:di, mono d.r.
= 1:1). Finally, we were pleased to find that a derivative of
threoninol gave the γ-aryl amino alcohol product in good yield
(14q, 65%).
a) V. G. Zaitsev, D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2005,
127, 13154-13155; b) G. He, G. Chen, Angew. Chem. Int. Ed. 2011, 50,
5192-5196; c) N. Rodríguez, J. A. Romero-Revilla, M. A. Fernández-
Ibáñez, J. C. Carretero, Chem. Sci. 2013, 4, 175-179; d) M. Fan, D. Ma,
Angew. Chem. Int. Ed. 2013, 52, 12152-12155; e) P.-X. Ling, S.-L. Fang,
X.-S. Yin, K. Chen, B.-Z. Sun, B.-F. Shi, Chem. Eur. J. 2015, 21, 17503-
17507; f) J. Han, Y. Zheng, C. Wang, Y. Zhu, D.-Q. Shi, R. Zeng, Z.-B.
Huang, Y. Zhao, J. Org. Chem. 2015, 80, 9297-9306; g) J. J. Topczewski,
P. J. Cabrera, N. I. Saper, M. S. Sanford, Nature 2016, 531, 220-224; h)
N. Gulia, O. Daugulis, Angew. Chem. Int. Ed. 2017, 56, 3630-3634; i) A.
Yada, W. Liao, Y. Sato, M. Murakami, Angew. Chem. Int. Ed. 2017, 56,
1073-1076; j) Y. Wu, Y.-Q. Chen, T. Liu, M. D. Eastgate, J.-Q. Yu, J. Am.
Chem. Soc. 2016, 138, 14554-14557; k) Y. Liu, H. Ge, Nat. Chem. 2017,
9, 26-32; l) M. Kapoor, D. Liu, M. C. Young, J. Am. Chem. Soc. 2018,
140, 6818-6822; m) Y.-Q. Chen, Z. Wang, Y. Wu, S. R. Wisniewski, J. X.
Qiao, W. R. Ewing, M. D. Eastgate, J.-Q. Yu, J. Am. Chem. Soc. 2018,
140, 17884-17894.
In summary, we have described a new method for C(sp3)–
H
arylation of free(NH) secondary amines mediated by
Pd(II)/Ag(I) using 2-halobenzoic acid reagents. Stoichiometric
studies from the Pd(II) metallacycle demonstrated a remarkably
mild, room temperature decarboxylative arylation is possible
when using 2-iodobenzoic acid in the presence of AgOAc.
Mechanistic studies suggest that the decarboxylation occurs from
a high valent Pd(IV) centre and that a 1,2-arylpalladium migration
ultimately leads to the required reductive elimination event. The
conditions were found to effectively translate to a catalytic system,
providing access to a variety of γ-arylated amine derivatives.
[6]
a) F. Barrios-Landeros, J. F. Hartwig, J. Am. Chem. Soc. 2005, 127,
6944-6945; b) H. M. Senn, T. Ziegler, Organometallics 2004, 23, 2980-
2988; c) P. Sehnal, R. J. K. Taylor, I. J. S. Fairlamb, Chem. Rev. 2010,
110, 824-889.
[7]
[8]
[9]
Y. Xu, M. C. Young, C. Wang, D. M. Magness, G. Dong, Angew. Chem.
Int. Ed. 2016, 55, 9084-9087.
a) K. J. Szabó, J. Mol.Catal. A: Chem. 2010, 324, 56-63; b) N. R. Deprez,
M. S. Sanford, Inorg. Chem. 2007, 46, 1924-1935.
Acknowledgements
a) A. McNally, B. Haffemayer, B. S. L. Collins, M. J. Gaunt, Nature 2014,
510, 129-133; b) A. P. Smalley, M. J. Gaunt, J. Am. Chem. Soc. 2015,
137, 10632-10641; c) J. Calleja, D. Pla, T. W. Gorman, V. Domingo, B.
Haffemayer, M. J. Gaunt, Nat. Chem. 2015, 7, 1009-1016.
We are grateful to EPSRC (EP/N031792/1) and for a studentship
(W.G.W.), AstraZeneca for a studentship (J.H.B.), the German
Academic Exchange Service (DAAD) for a scholarship (G.N.H.),
and the Royal Society for a Wolfson Merit Award (M.J.G.) for
funding. We are grateful to the mass spectrometry service at the
University of Swansea and to Dr Andrew D. Bond for X-ray
crystallographic analysis. We are grateful for useful discussion
with Dr Charlene Fallan and Dr Thomas Hunt (AstraZeneca).
[10] a) D. Willcox, B. G. N. Chappell, K. F. Hogg, J. Calleja, A. P. Smalley, M.
J. Gaunt, Science 2016, 354, 851-856; b) J. R. Cabrera-Pardo, A.
Trowbridge, M. Nappi, K. Ozaki, M. J. Gaunt, Angew. Chem. Int. Ed.
2017, 56, 11958-11962.
[11] a) A. D. Ryabov, Chem. Rev. 1990, 90, 403-424; b) R. A. Widenhoefer,
S. L. Buchwald, Organometallics 1996, 15, 3534-3542; c) J. Dupont, C.
S. Consorti, J. Spencer, Chem. Rev. 2005, 105, 2527-2571.
[12] Under otherwise identical conditions, reaction of 3 with diphenyliodonium
triflate gave no conversion to 4a. Heating to 80 oC for 16 h resulted in full
consumption of 3 and 24% yield of 4a by NMR.
Keywords: C–H activation • palladium • palladacycle •
alkylamine • decarboxylation
[13] See the Supplementary Information for details of the control experiment
of 3 with 2-bromobenzoic acid.
[1]
a) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42,
1074-1086; b) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew.
Chem. Int. Ed. 2009, 48, 5094-5115; c) T. W. Lyons, M. S. Sanford,
Chem. Rev. 2010, 110, 1147-1169; d) O. Baudoin, Chem. Soc. Rev.
2011, 40, 4902-4911; e) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc.
Chem. Res. 2012, 45, 788-802; f) O. Daugulis, J. Roane, L. D. Tran, Acc.
Chem. Res. 2015, 48, 1053-1064; g) G. Qiu, J. Wu, Org. Chem. Front.
2015, 2, 169-178; h) G. He, B. Wang, W. A. Nack, G. Chen, Acc. Chem.
Res. 2016, 49, 635-645; i) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q.
Yu, Chem. Rev. 2017, 117, 8754-8786; j) Y. Xu, G. Dong, Chem. Sci.
2018, 9, 1424-1432; k) J. C. K. Chu, T. Rovis, Angew. Chem. Int. Ed.
2018, 57, 62-101; l) T. G. Saint-Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-
Q. Yu, Science 2018, 359, eaao4798.
[14] J. Vincente, A. Arcas, F. Juliá-Hernández, D. Bautista, Angew. Chem. Int.
Ed. 2011, 50, 6896-6899.
[15] a) R. Huisgen, J. Sauer, Angew. Chem. 1960, 72, 91-108; b) E. R. Biehl,
E. Nieh, K. C. Hsu, J. Org. Chem. 1969, 34, 3595-3599; c) J. L.
Henderson, A. S. Edwards, M. F. Greaney, J. Am. Chem. Soc. 2006, 128,
7426-7427; d) J. L. Henderson, A. S. Edwards, M. F. Greaney, Org. Lett.
2007, 9, 5589-5592; e) J.-A. García-López, M. F. Greaney, Chem. Soc.
Rev. 2016, 45, 6766-6798.
[16] See the Supplementary Information for aryne trapping experiments.
[17] a) N. Rodríguez, L. K. Goossen, Chem. Soc. Rev. 2011, 40, 5030-5048;
b) J. Cornella, I. Larrosa, Synthesis 2012, 44, 653-676; c) G. J. P. Perry,
I. Larrosa, Eur. J. Org. Chem. 2017, 3517-3527; d) M. Font, J. M. Quibell,
G. J. P. Perry, I. Larrosa, Chem. Commun. 2017, 53, 5584-5597.
[18] a) N. M. Camasso, M. H. Pérez-Temprano, M. S. Sanford, J. Am. Chem.
Soc. 2014, 136, 12771-12775; b) M. Nappi, C. He, W. G. Whitehurst, B.
G. N. Chappell, M. J. Gaunt, Angew. Chem. Int. Ed. 2018, 57, 3178-3182.
[2]
[3]
C. He, W. G. Whitehurst, M. J. Gaunt, Chem 2019, DOI:
10.1016/j.chempr.2018.12.017.
a) S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451-3479; b)
E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257-
10274; c) D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W.
Thomas, D. M. Wilson, A. Wood, Nat. Chem. 2018, 10, 383-394.
This article is protected by copyright. All rights reserved.