110
A.B. AlemAyehu AnD A. GhOSh
6H, 5,10 and 15-p-butyl), 1.95 (m, 6H, 5,10 and 15-p-
butyl), 1.63 (m, 6H, 5,10,15-p-butyl), 1.14 (m, 9H, 5,10
and 15-p-butyl). MS (MALDI-TOF, major isotopomer):
m/z [M]+ 1520.05 (expt.), 1520.06 (calcd. for C49H39N4-
Br8Au). Elemental analysis: C 38.53, H 2.37, N 3.76
(calcd. 38.70, 2.56, 3.69, respectively).
4. Paolesse R, Mini S, Sagone F, Boschi T, Jaquinod
L, Nurco DJ and Smith KM. Chem. Comm. 1999;
1307–1308.
5. Koszarna B and Gryko DT. J. Org. Chem. 2006; 71:
3707–3717.
6. Wasbotten IH, Wondimagegn T and Ghosh A.
J. Am. Chem. Soc. 2002; 124: 8104–8116.
7. Steene E, Wondimagegn T and Ghosh A. J. Am.
Chem. Soc. 2003; 125: 16300–16309.
8. AlemayehuAB, Gonzalez E, Hansen LK and Ghosh
A. Inorg. Chem. 2009; 48: 7794–7799.
9. Alemayehu AB, Conradie J, Hansen LK and Ghosh
A. Inorg. Chem. 2010; 49: 7608–7610.
10. Capar C, Thomas KE and Ghosh A. J. Porphyrins
Phthalocyanines 2008; 12: 964–967.
11. Capar C, Hansen L.-K, Conradie J and Ghosh A.
J. Porphyrins Phthalocyanines 2010; 14: 509–512.
12. Ou Z, Shao J, Zhao H, Ohkubo K, Wasbotten IH,
Fukuzumi S, Ghosh A and Kadish KM. J. Porphy-
rins Phthalocyanines 2004; 8: 1236–1247.
13. The poor solubility of the Au[Br8T(p-X-P)C] deriv-
atives in CH2Cl2 may be viewed as somewhat para-
doxical, given that the complexes were synthesized
in that solvent.
14. Gold corroles appear to be rather stable, consider-
ably more so than silver corroles, which demeta-
late easily, even by traces of acid typically present
in dichloromethane: Stefanelli M, Shen J, Zhu W,
Mastroianni M, Mandoj F, Nardis S, Ou Z, Kadish
KM, Fronczek FR, Smith KM and Paolesse R.
Inorg. Chem. 2009; 48: 6879–6887.
Au[Br8T(p-MeO-P)C]. Yield 65%. UV-vis (CH2Cl2):
λ
max, nm (ε × 10-4, M-1.cm-1) 433 (14.70), 542 (1.06), 580
(3.56). 1H NMR (C6Cl2D4): δ, ppm 8.02 (d, J = 8 Hz, 4H,
5,15-o or m-phenyl), 7.99 (d, J = 8.4 Hz, 2H, 10-o or
m-phenyl), 7.46 (d, J = 8 Hz, 4H, 5,15-m or o-phenyl), 7.42
(d, J = 8 Hz, 2H, 10-m or o-phenyl), 4.08 (s, 6H, 5,15-p-
OCH3), 4.07 (s, 3H, 10-p-CH3). MS (MALDI-TOF, major
isotopomer): m/z [M]+ 1441.96 (expt.), 1441.82 (calcd.
for C40H21N4O3Br8Au). Elemental analysis: C 33.71, H
1.58, N 3.88 (calcd. 33.30, 1.47, 3.89, respectively).
CONCLUSION
In concluding, we would like to emphasize that the
successful synthesis of gold corroles owes critically to the
ease and generality of our reductive demetalation-based
synthesis of free-base β-octabromo-meso-triarylcorrole
ligands [16]. Electronic absorption, electrochemical and
DFT studies already indicate fascinating variations in
electronic structure among the coinage metal corroles.
Acknowledgements
This work was supported by the Research Council of
Norway.
15. a) Becke AD. Phys. Rev. 1988; A38: 3098–3100.
b) Perdew JP. Phys. Rev. 1986; B33: 8822. Erratum:
Perdew JP. Phys. Rev. 1986; B34: 7406. c) Dis-
persion corrections: Grimme S. J. Comput. Chem.
2006; 27: 1787.
16. Aside from gold corroles, iridium corroles are the
only other examples of third-row transition metal
corroles synthesized to date: Palmer JH, Day MW,
Wilson AD, Henling LM, Gross Z and Gray HB.
J. Am. Chem. Soc. 2008; 130: 7786–7787.
REFERENCES
1. For reviews on the coordination chemistry of
porphyrins and related ligands, see: Handbook of Por-
phyrin Science, Vol. 2, Kadish KM, Smith KM and
Guilard R. (Eds.) World Scientific: Singapore, 2010.
2. Aviv-Harel I and Gross Z. Chem. Eur. J. 2009; 15:
8382–8394.
3. Gross Z, Galili N and Saltsman I. Angew. Chem. Int.
Ed. 1999; 38: 1427–1429.
Copyright © 2011 World Scientific Publishing Company
J. Porphyrins Phthalocyanines 2011; 15: 110–110