Inorganic Chemistry
Article
(30) Nakayama, N.; Ito, K. Sprayed films of stannite Cu2ZnSnS4.
Appl. Surf. Sci. 1996, 92, 171−175.
(31) Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.;
Todorov, T. K.; Zhu, Y.; Mitzi, D. B. Device Characteristics of
CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy
Mater. 2014, 4, 1301465.
(50) Puff, H.; Schuh, W.; Sievers, R.; Wald, W.; Zimmer, R.
Niedermolekulare diorganozinn-sauerstoff-verbindungen: di-t-butyl-
und di-t-amylzinnoxid. J. Organomet. Chem. 1984, 260, 271−280.
(51) Brauer, G. Handbuch der Praparativen Anorganischen Chemie;
̈
Ferdinand Enke Verlag: Stuttgart, 1978.
̈
(52) Schmidt, M.; Ruf, H. Uber die Umsetzung von Organo-
(32) Zhang, R.; Szczepaniak, S. M.; Carter, N. J.; Handwerker, C. A.;
Agrawal, R. A Versatile Solution Route to Efficient Cu2ZnSn(S,Se)4
Thin-Film Solar Cells. Chem. Mater. 2015, 27, 2114−2120.
(33) Zhang, R.; Cho, S.; Lim, D. G.; Hu, X.; Stach, E. A.;
Handwerker, C. A.; Agrawal, R. Metal-metal chalcogenide molecular
precursors to binary, ternary, and quaternary metal chalcogenide thin
films for electronic devices. Chem. Commun. 2016, 52, 5007−5010.
halogensilanen mit Natriumselenid. Z. Anorg. Allg. Chem. 1963, 321,
270−273.
(53) Kluge, O.; Friedrich, D.; Wagner, G.; Krautscheid, H. New
organometallic single-source precursors for CuGaS2-polytypism in
gallite nanocrystals obtained by thermolysis. Dalton Trans. 2012, 41,
8635−8642.
(54) Friedrich, D. Synthesis and Characterization of Potential
Organometallic CIGSSe Precursors Based on 1,2-Ethanedichalcogenolates.
́
(34) Madarasz, J.; Bombicz, P.; Okuya, M.; Kaneko, S. Thermal
decomposition of thiourea complexes of Cu(I), Zn(II), and Sn(II)
chlorides as precursors for the spray pyrolysis deposition of sulfide thin
films. Solid State Ionics 2001, 141−142, 439−446.
Dissertation. Universitat Leipzig, Leipzig, 2012.
̈
(55) Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.;
Goodfellow, R.; Granger, P. NMR NOMENCLATURE. NUCLEAR
SPIN PROPERTIES AND CONVENTIONS FOR CHEMICAL
SHIFTS. Pure Appl. Chem. 2001, 73, 1795−1818.
(35) Kociok-Kohn, G.; Molloy, K. C.; Sudlow, A. L. Molecular routes
̈
to Cu2ZnSnS4: A comparison of approaches to bulk and thin-film
materials. Can. J. Chem. 2014, 92, 514−524.
(56) STOE & Cie GmbH. X-Area Version 1.70; Darmstadt, 2014.
(57) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr.,
Sect. A: Found. Crystallogr. 2008, 64, 112−122.
(58) Brandenburg, K.; Putz, H. Diamond Version 3.2k; Bonn, 2014.
(59) Bruker AXS. TOPAS Version 5; Karlsruhe, 2014.
(36) Ramasamy, K.; Malik, M. A.; O’Brien, P. The chemical vapor
deposition of Cu2ZnSnS4 thin films. Chem. Sci. 2011, 2, 1170−1172.
(37) Palchik, O.; Iyer, R. G.; Liao, J. H.; Kanatzidis, M. G.
K10M4Sn4S17 (M = Mn, Fe, Co, Zn): Soluble Quaternary Sulfides with
the Discrete [M4Sn4S17]10‑ Supertetrahedral Clusters. Inorg. Chem.
2003, 42, 5052−5054.
(60) Nitsche, R.; Sargent, D. F.; Wild, P. Crystal growth of
quaternary 122464 chalcogenides by iodine vapor transport. J. Cryst.
Growth 1967, 1, 52−53.
(38) Palchik, O.; Iyer, R. G.; Canlas, C. G.; Weliky, D. P.; Kanatzidis,
M. G. K10M4M’4S17 (M = Mn, Fe, Co, Zn; M’ = Sn, Ge) and
Cs10Cd4Sn4S17: Compounds with a Discrete Supertetrahedral Cluster.
Z. Anorg. Allg. Chem. 2004, 630, 2237−2247.
̈
(61) Jumpertz, E. A. Uber die Elektronendichteverteilung in der
Zinkblende. Z. Elektrochem 1955, 59, 419−425.
(62) Wiedemeier, H.; von Schnering, H. G. Refinement of the
structures of GeS, GeSe, SnS and SnSe. Z. Kristallogr. 1978, 148, 295−
303.
(39) Manos, M. J.; Iyer, R. G.; Quarez, E.; Liao, J. H.; Kanatzidis, M.
G. {Sn[Zn4Sn4S17]}6−: A Robus t Open Framework Based on Metal-
Linked Penta-Supertetrahedral [Zn4Sn4S17]10− Clusters with Ion-
Exchange Properties. Angew. Chem., Int. Ed. 2005, 44, 3552−3555.
(63) Janosi, A. La structure du sulfure cuivreux quadratique. Acta
Crystallogr. 1964, 17, 311−312.
́
(40) Zimmermann, C.; Anson, C. E.; Weigend, F.; Clerac, R.;
(64) Evans, H. T., Jr The crystal structures of low chalcocite and
djurleite. Z. Kristallogr. 1979, 150, 299−300.
Dehnen, S. Unusual Syntheses, Structures, and Electronic Properties of
Compounds Containing Ternary, T3-Type Supertetrahedral M/Sn/S
Anions [M5Sn(μ3-S)4(SnS4)4]10‑ (M = Zn, Co). Inorg. Chem. 2005, 44,
5686−5695.
̈
(65) Hahn, H.; Schulze, H. Uber quaternare Chalkogenide des
̈
Germaniums und Zinns. Naturwissenschaften 1965, 52, 426.
(66) Yim, W. M. Solid Solutions in the Pseudobinary (III-V)-(II-VI)
Systems and Their Optical Energy Gaps. J. Appl. Phys. 1969, 40, 2617.
(67) Wiedemeier, H.; von Schnering, H. G. Refinement of the
structure of Ge S, Ge Se, Sn S and Sn Se. Z. Kristallogr. 1978, 148,
295−303.
(41) Barth, B. E. K.; Leusmann, E.; Harms, K.; Dehnen, S. Towards
the installation of transition metal ions on donor ligand decorated tin
sulfide clusters. Chem. Commun. 2013, 49, 6590.
(42) Yang, Y.-F.; Ganguly, R.; Li, Y.; So, C.-W. Reactivity of a Tin(II)
1,3-Benzodi(thiophosphinoyl)methanediide Complex toward Gallium,
Germanium, and Zinc Compounds. Organometallics 2013, 32, 2643−
2648.
(43) Han, J.-y.; Liu, Y.; Lu, J.-l.; Tang, C.-y.; Shen, Y.-l.; Zhang, Y.; Jia,
D.-x. Methanolothermal Syntheses, Crystal Structures and Optical
Properties of Binuclear Transition Metal Complexes Involving the
Bidentate S-Donor Ligand μ-Sn2S6. J. Chem. Crystallogr. 2015, 45,
355−362.
(44) Maeda, Y.; Okawara, R. Studies on dialkyltin diacetate
derivatives. J. Organomet. Chem. 1967, 10, 247−256.
(45) Dietzel, S.; Jurkschat, K.; Tzschach, A.; Zschunke, A. Synthese
und spektroskopische Untersuchungen von Di-t-Butylzinn(IV)-
dicarboxylaten. Z. Anorg. Allg. Chem. 1986, 537, 163−168.
(46) Mokal, V. B.; Jain, V. K. Steric effects on the formation of
isolable products in the reactions of dibutyltin oxides with carboxylic
acids. J. Organomet. Chem. 1992, 441, 215−226.
(47) Lockhart, T. P.; Manders, W. F.; Holt, E. M. Solution and Solid-
state Molecular Structures of Me2Sn(OAC)2 (I) and Its Hydrolyzate,
(Me2Sn(OAc)2]O2) (II), by Solution and Solid-state 13C NMR. X-ray
Diffraction Study of II. J. Am. Chem. Soc. 1986, 108, 6611−6616.
(48) Kandil, S. A.; Allred, A. L. Tertiary Butyl Derivatives of Tin. J.
Chem. Soc. A 1970, 1970, 2987−2992.
(49) Brown, M. P.; Okawara, R.; Rochow, E. G. Infrared spectra of
some methyl derivatives of germanium and tin. Spectrochim. Acta 1960,
16, 595−601.
(68) Gulay, L.; Daszkiewicz, M.; Strok, O.; Pietraszko, A. Crystal
structure of Cu2Se. Chem. Met. Alloys 2011, 4, 200−205.
(69) Bok, L. D. C.; de Wit, J. H. Zur Kenntnis einiger ternarer Sulfide
̈
und Selenide. Z. Anorg. Allg. Chem. 1963, 324, 162−167.
(70) DeGroot, M. W.; Corrigan, J. F. Coordination Complexes of
Zinc with Reactive ESiMe3 (E = S, Se, Te) Ligands. Organometallics
2005, 24, 3378−3385.
(71) DeGroot, M. W.; Taylor, N. J.; Corrigan, J. F. Controlled
Synthesis of Ternary II−II‘−VI Nanoclusters and the Effects of Metal
Ion Distribution on Their Spectral Properties. Inorg. Chem. 2005, 44,
5447−5458.
(72) Khadka, C. B.; Eichhofer, A.; Weigend, F.; Corrigan, J. F. Zinc
̈
Chalcogenolate Complexes as Precursors to ZnE and Mn/ZnE (E = S,
Se) Clusters. Inorg. Chem. 2012, 51, 2747−2756.
(73) Comeau, A.; Liu, J. J.; Khadka, C. B.; Corrigan, J. F.;
Konermann, L. Nanocluster Isotope Distributions Measured by
Electrospray Time-of-Flight Mass Spectrometry. Anal. Chem. 2013,
85, 1200−1207.
(74) Holleman/Wiberg Anorganische Chemie, 103 ed.; de Gruyter,
2017.
(75) Unit cell parameters of the triclinic modification: 12.813 Å,
16.249 Å, 16.889 Å, 105.56°, 90.47°, 92.31°.
(76) Davies, A. G. Organotin Chemistry; Wiley-VCH: Weinheim,
2004.
H
Inorg. Chem. XXXX, XXX, XXX−XXX