www.eurjic.org
FULL PAPER
the mother liquor with a pipette, and dried under vacuum, yield
Ribbe, Y. Hu, K. O. Hodgson, B. Hedman, Chem. Rev. 2014,
114, 4063–4080.
2] G. Seiffert, G. Ullmann, A. Messerschmidt, B. Schink, P. Kro-
1
200 mg, (45%). H NMR (CDCl
3
, 300 MHz, 298 K): δ = 9.13 (br.
[
[
[
s, 1 H, 2-H), 9.00 (s, 1 H, 8-H), 8.69 (br. s, 1 H, 6-H), 8.08 (d, J =
Cp 13
neck, O. Einsle, Proc. Natl. Acad. Sci. USA 2004, 104, 3073–
7
.9 Hz, 1 H, 4-H), 7.28 (m, 1 H, 5-H), 5.41 ppm (s, 5 H, H ).
NMR (CDCl , 75 MHz, 298 K): δ = 167.9 (C-7), 155.6 (C-8), 148.5
C-6, C-3), 147.3 (C-2), 133.4 (C-4), 124.3 (C-5), 79.5 (C ) ppm.
MS (EI): m/z = 291 [M], 188 [C Co], 124 [C Co].
Co (291.28): calcd. C 49.5, H 3.4, N, 4.8; found C 49.3,
C
3
077.
3] a) R. R. Mendel, S. Leimkuhler, J. Biol. Inorg. Chem. 2015, 20,
37–347; b) S. Leimkuhler, M. M. Wuebbens, K. V. Rajagopa-
3
Cp
(
3
5
H
5
S
2
5 5
H
lan, Coord. Chem. Rev. 2011, 255, 1129–1144.
12 2
C H10NS
4] a) F. Schneider, J. Lowe, R. Huber, H. Schindelin, C. Kisker,
J. Knablein, J. Mol. Biol. 1996, 263, 53–69; b) C. Kisker, H.
Schindelin, D. C. Rees, Annu. Rev. Biochem. 1997, 66, 233–267;
c) D. C. Rees, Y. L. Hu, C. Kisker, H. Schindelin, J. Chem. Soc.,
Dalton Trans. 1997, 3909–3914; d) C. Kisker, H. Schindelin, D.
Baas, J. Retey, R. U. Meckenstock, P. M. H. Kroneck, FEMS
Microbiol. Rev. 1998, 22, 503–521; e) M. J. Romao, Dalton
Trans. 2009, 4053–4068; f) H. Dobbek, Coord. Chem. Rev.
2011, 255, 1104–1116.
H 3.7, N 4.3.
η5-Cyclopentadienyl(1-pyrazin-2-yl-1,2-dithiolato)cobalt(III)
(3):
This compound was synthesized by a modification of the procedure
[
17e]
described by Bradshaw et al.
NaOH (0.21 g, 2.5 mmol) was dis-
3
solved in dry EtOH (10 cm ), and 4-(pyrazin-2-yl)-1,3-dithiol-2-one
0.18 g, 0.90 mmol) was added. [(η -C
.00 mmol) in dry EtOH (5 cm ) was added, and the deep blue
5
(
1
5
H
5
)Co(CO)I
2
] (0.40 g,
3
[
[
[
[
5] R. Hille, J. Hall, P. Basu, Chem. Rev. 2014, 114, 3963–4038.
6] R. Hille, Chem. Rev. 1996, 96, 2757–2816.
coloured solution produced was stirred overnight. After this time,
the solvent was removed under vacuum, and the resultant black
solid was subjected to flash column chromatography (silica 60,
CH Cl /MeOH 99:1, v/v). A dark blue fraction was collected as a
2 2
single band, and the solvent was removed from this under vacuum,
7] G. N. George, R. C. Bray, Biochemistry 1988, 27, 3603–3609.
8] E. L. Klein, A. A. Belaidi, A. M. Raitsimring, A. C. Davis, T.
Krämer, A. V. Astashkin, G. Neese, G. Schwarz, J. H. Ene-
mark, Inorg. Chem. 2014, 53, 961–971.
9] a) J. McMaster, J. M. Tunney, C. D. Garner, in: Progress in
Inorganic Chemistry: Synthesis Properties, and Applications,
vol. 52 (Ed.: E. I. Stiefel), 2004, p. 539–583; b) R. H. Holm,
E. I. Solomon, A. Majumdar, A. Tenderholt, Coord. Chem.
Rev. 2011, 255, 993–1015.
to leave a dark blue solid. The solid was washed with methanol
[
3
(
2ϫ 10 cm ) and dried. The product was crystallized from dichlo-
romethane/hexane (5:2) to give blue shiny crystals that were suit-
1
able for X-ray diffraction, yield 88 mg (33%). H NMR (CDCl
3
,
4
00 MHz, 298 K): δ = 9.54 (s, 1 H, 8-H), 9.34 (s, 1 H, 3-H), 8.52
1
3
(br. s, 1 H, 5-H), 8.49 (br. s, 1 H, 6-H) 5.46 (s, 5 H, Cp) ppm.
C
[10] M. G. Bertero, R. A. Rothery, M. Palak, C. Hou, D. Lim, F.
NMR (CDCl
3
, 75 MHz, 298 K): δ = 165.45 (C-2), 160.18 (C-8),
Blasco, J. H. Weiner, N. C. J. Strynadka, Nat. Struct. Biol.
2003, 10, 681–687.
1
51.71 (C-7), 143.96 (C-3), 142.28 (C-5), 141.33 (C-6), 79.73
Cp
[11] D. P. Kloer, C. Hagel, J. Heider, G. E. Schulz, Structure 2006,
(C
) ppm. HRMS (MALDI-ToF): calcd. for C11
H
10CoN
2 2
S [M
H]+ 292.9617; found 292.9624. C11
14, 1377–1388.
+
H N S Co (292.26): calcd. C
9 2 2
[
[
12] a) J. H. Enemark, C. D. Garner, J. Biol. Inorg. Chem. 1997,
, 817–822; b) J. P. McNamara, J. A. Joule, I. H. Hillier, C. D.
45.20, H 3.10, N, 9.58; found C 44.89, H 3.87, N 9.37.
2
Garner, Chem. Commun. 2005, 177–179.
Supporting Information (see footnote on the first page of this arti-
13] R. Eisenberg, H. B. Gray, Inorg. Chem. 2011, 50, 9741–9751.
[14] a) C. Dong, J. Yang, S. Leimkühler, M. L. Kirk, Inorg. Chem.
cle): Experimentally measured and TDDFT-calculated UV/Vis ab-
+
+
sorption bands for 1, 2, [2H] , 3 and [3H] , geometry-optimized
2
014, 53, 7077–7079; b) B. Stein, M. Kirk, J. Biol. Inorg. Chem.
bond lengths, interbond, metalladithiolene fold and dithiolene –
2
015, 20, 183–194; c) R. Rothery, J. Weiner, J. Biol. Inorg.
–
–
–
z
z
aromatic ring plane angles for [1] , [2] , [3] , [2H] and [3H] (z =
+
Chem. 2015, 20, 349–372; d) M. Gómez, N. Neuman, S. Dalo-
sto, P. González, J. Moura, A. Rizzi, C. Brondino, J. Biol. In-
org. Chem. 2015, 20, 233–242; e) P. Basu, S. Burgmayer, J. Biol.
Inorg. Chem. 2015, 20, 373–383.
–
–
–
1, 0), fluid X-band EPR spectra of [1] , [2] and [3] , energy level
diagram and pictorial representations of the Kohn–Sham frontier
+
+
orbitals of 1, 2, [2H] , 3 and [3H] , the nature, energy and composi-
–
–
–
tion of the α-spin frontier orbitals of [1] , [2] , [3] , [2H] and [3H],
[15] R. A. Rothery, B. Stein, M. Solomonson, M. L. Kirk, J. H.
Weiner, Proc. Natl. Acad. Sci. USA 2012, 109, 14773–14778.
[16] J. L. Johnson, B. E. Hainline, K. V. Rajagopalan, J. Biol. Chem.
1980, 255, 1783–1786.
experimentally measured and DFT-calculated UV/Vis spectra of
[
1] , [2] and [3]y (y = 0 or –1), experimentally measured and
y
y
–
–
TDDFT-calculated UV/Vis absorption bands for [1] , [2] and
–
y
y
[17] a) E. M. Armstrong, M. S. Austerberry, J. H. Birks, R. L. Bed-
does, M. Helliwell, J. A. Joule, C. D. Garner, Heterocycles 1993,
[
3] , and gas-phase geometry-optimized coordinates for [1] , [2]
y
z
z
and [3] (y = 0 or –1) and [2H] and [3H] (z = +1 or 0).
35, 563–568; b) A. Dinsmore, J. H. Birks, C. D. Garner, J. A.
CCDC-1047105 (for 1), -1047106 (for 2) and -1047107 (for 3) con-
tain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Joule, J. Chem. Soc. Perkin Trans. 1 1997, 801–807; c) B. Brad-
shaw, A. Dinsmore, C. D. Garner, J. A. Joule, Chem. Commun.
1998, 417–418; d) B. Bradshaw, D. Collison, C. D. Garner, J. A.
Joule, Chem. Commun. 2001, 123–124; e) B. Bradshaw, A. Din-
smore, D. Collison, C. D. Garner, J. A. Joule, J. Chem. Soc.
Perkin Trans. 1 2001, 3232–3238; f) F.-A. Alphonse, R. Karim,
C. Cano-Soumillac, M. Hebray, D. Collison, C. D. Garner,
J. A. Joule, Tetrahedron 2005, 61, 11010–11019; g) B. R. Wil-
liams, Y. Fu, G. P. A. Yap, S. J. N. Burgmayer, J. Am. Chem.
Soc. 2012, 134, 19584–19587; h) I. V. Primov, A. A. Peterson,
D. N. Vaccarello, P. Basu, RSC Adv. 2014, 4, 19072–19076.
Acknowledgments
The authors thank the European Research Council (ERC) (project
MocoModels), the Engineering and Physical Sciences Research
Council (EPSRC), the University of Nottingham, UK, Trinity [18] a) A. Sugimori, T. Akiyama, M. Kajitani, T. Sugiyama, Bull.
College Dublin, Ireland, Ernst-Moritz-Arndt-Universität, Greifs-
wald, Germany and the European Union, COST Action CM1003
for generously supporting this work.
Chem. Soc. Jpn. 1999, 72, 879–908; b) K. Wang, in: Progress
in Inorganic Chemistry: Synthesis Properties, and Applications,
vol. 52 (Ed.: E. I. Stiefel), 2003, p. 267–314; c) N. Nomura, Dal-
ton Trans. 2011, 40, 2112–2140.
[
19] a) E. S. Davies, R. L. Beddoes, D. Collison, A. Dinsmore, A.
Docrat, J. A. Joule, C. R. Wilson, C. D. Garner, J. Chem. Soc.,
Dalton Trans. 1997, 3985–3996; b) E. S. Davies, G. M. Aston,
[
1] a) B. M. Hoffman, D. Lukoyanov, Z.-Y. Yang, D. R. Dean,
L. C. Seefeldt, Chem. Rev. 2014, 114, 4041–4062; b) M. W.
Eur. J. Inorg. Chem. 2015, 3550–3561
3560
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim