Reduction of Carbonyl Compounds by a Methano[11]annulenylium System
nicotinamide.6 Coenzyme NADH, a cofactor of L-lactate de-
hydrogenase, functions as an enantioselective agent that reduces
pyruvate to L-lactate during anaerobic glycolysis. During the
past several decades, efforts have been made to create model
compounds mimicking the activity of the NAD+-NADH redox
couple.7-17 The introduction of an optically active N-substituent
in the amide of 1-alkylated 1,4-dihydronicotinamides, e.g., 1,
can induce modest to moderate chirality transfer toward carbonyl
compounds (Figure 1).18,19 Furthermore, Ohno and co-workers
have improved considerably chirality transfer by the additional
introduction of methyl groups at C2 and C4 in the NADH
model, e.g., compound 2.20 The new chiral center at C4 controls
the mode of hydride transfer. Moreover, the reduction of
carbonyl compounds by using 1,5-dihydro-5-deazaflavin 3 has
been reported.21 On the basis of the above observations, we have
(1) Muller, F. Chemistry and Biochemistry of FlaVoenzymes; Muller, F.,
Eds.; CRC Press: Boca Raton, 1991; Vol. 1, p 1 and references therein.
FIGURE 1. NADH model compounds and 7- and 11-membered ring
cations.
(2) (a) Chiu, C. C.; Pan, K.; Jordan, F. J. Am. Chem. Soc. 1995, 117,
7027. (b) Kim, J.; Hoegy, S. E.; Mariano, P. S. J Am. Chem. Soc. 1995,
117, 100. (c) Murahashi, S.; Ono, S.; Imada, Y. Angew. Chem., Int. Ed.
2002, 41, 2366. (d) Bergstad, K.; Jonsson, S.; Ba¨chvall, J. J. Am. Chem.
Soc. 1999, 121, 10424. (e) Van Houten, K. A.; Kim, J.; Bogdan, M. A.;
Ferri, D. C.; Mariano, P. S. J. Am. Chem. Soc. 1998, 120, 5864. (f) Zheng,
Y.; Ornstein, R. L. J. Am. Chem. Soc. 1996, 118, 9402. (g) Breinlinger, E.
C.; Keenan, C. J.; Rotello, V. M. J. Am. Chem. Soc. 1998, 120, 8606. (h)
Hasford, J. J.; Rizzo, C. J. J. Am. Chem. Soc. 1998, 120, 2251. (i) Antony,
J.; Medvedev, D. M.; Stuchebrukhov, A. A. J. Am. Chem. Soc. 2000, 122,
1057.
(3) Yoneda, F.; Kokel, B. In Chemistry and Biochemistry of FlaVoen-
zymes; Muller, F., Ed.; CRC Press: Boca Raton, 1991; Vol. 1, p 121 and
references therein.
(4) Yoneda, F.; Hirayama, R.; Yamashita, M. Chem. Lett. 1980, 1157.
(5) Nitta, M.; Tajima, Y. Synthesis 2000, 651.
previously studied the synthesis, properties, and reactivity of
10-substituted 1,3-dimethylcyclohepta[4,5]pyrrolo[2,3-d]pyri-
midine-2,4(1,3H)-dionylium ions 4a,b+‚BF4
and the furan
-22
analogue 4c+‚BF4- 23 In these studies, it was clarified that the
.
-
pyrrole analogues 4a,b +‚BF4- have higher stability (4a+‚BF4
:
pKR+ ) 11.2, 4b+‚BF4-: pKR+ ) 10.9) as compared with
4c+‚BF4 (pKR+ ) ca. 6.0). In addition, novel photoinduced
-
autorecycling oxidizing reactions of 4a-c+‚BF4- toward some
alcohols and amines have also been studied.24 Thus, structural
modifications of the uracil-annulated heteroazulenes such as 4a-
c+‚BF4 are an interesting project from the viewpoint of
-
(6) Walsh, C. Acc. Chem. Res. 1980, 13, 148.
(7) Kanomata, N.; Nakata, T. J. Am. Chem. Soc. 2000, 122, 4563.
(8) Kanomata, N. J. Synth. Org. Chem. Jpn. 1999, 57, 512.
(9) Murakami, Y.; Kikuchi, J.; Hisaeda, Y.; Hayashida, O. Chem. ReV.
1996, 96, 721.
(10) Dupas, G.; Levacher, V.; Bourguignon, J.; Que´guiner, G. Heterocyles
1994, 39, 405.
exploration of redox functions. Much of the motivation for
studying the properties of organic molecules stems from
manipulation of the primary chemical structure. One strategy
for raising or lowering the HOMO and LUMO levels includes
conjugation length control. Furthermore, the π-conjugation mode
in polycyclic conjugated π-systems containing more than one
(4n+2) conjugation loop is an important subject from both
theoretical and experimental viewpoints. Combination of more
than one π-system can endow the original π-system with new
properties. From these viewpoints, we have recently reported
the synthesis, properties, and oxidizing ability of 5,10-
methanocycloundeca[4,5]pyrrolo[2,3-d]pyrimidine-2,4(1,3H)-di-
one derivatives 10a,b25 (Scheme 1, vide infra) and 1,3-dimethyl-
(11) Burgess, V. A.; Davies, S. G.; Skerlj, R. T. Tetrahedron: Asynm-
metry 1991, 2, 299.
(12) (a) Ohno, A.; Ikeuchi, M.; Kimura, T.; Oka, S. J. Am. Chem. Soc.
1979, 101, 7036. (b) Mikata, Y.; Hayashi, K.; Mizukami, K.; Matsumoto,
S.; Yano, S.; Yamazaki, N.; Ohno, A. Tetrahedron Lett. 2000, 41, 1035.
(c) de Kok, P. M. T.; Bastiaansen, L. A. M.; van Lier, P. M.; Vekemans,
J. A. J. M.; Buck, H. M. J. Org. Chem. 1989, 54, 1313. (d) Meyers, A. I.;
Oppenlaender, T. J. Am. Chem. Soc. 1986, 108, 1989. (e) Meyers, A. I.;
Brown, J. D. J. Am. Chem. Soc. 1987, 109, 3155.
(13) (a) Combret, Y.; Torche´, J. J.; Pie´, N.; Duflos, J.; Dupas, G.;
Bourguignon, J.; Que´guiner, G. Tetrahedron 1991, 47, 9369. (b) Combret,
Y.; Torche´, J. J.; Binay, P.; Dumpas, G.; Bourguignon, J.; Que´guiner, G.
Chem. Lett. 1991, 125. (c) Combret, Y.; Duflos, J.; Dupas, G.; Bourguignon,
J.; Que´guiner, G. Tetrahedron 1993, 49, 5237.
(14) (a) Burgess, V. A.; Davies, S. G.; Skerlj, R. T.; Whittaker, M.
Tetrahedron: Asymmetry 1992, 3, 871. (b) Burgess, V. A.; Davies, S. G.;
Skerlj, R. T. J. Chem. Soc., Chem. Commun. 1990, 1759.
(15) (a) Seki, M.; Baba, N.; Oda, J.; Inouye, Y. J. Am. Chem. Soc. 1981,
103, 4613. (b) Hoshide, F.; Ohi, S.; Baba, N.; Oda, J.; Inouye, Y. Agric.
Biol. Chem. 1982, 46, 2173. (c) Seki, M.; Baba, N.; Oda, J.; Inouye, Y. J.
Org. Chem. 1983, 48, 1370.
(16) (a) de Vries, J. G.; Kellogg, R. M. J. Am. Chem. Soc. 1979, 101,
2759. (b) Jouin, P.; Troostwijk, C. B.; Kellogg, R. M. J. Am. Chem. Soc.
1981, 103, 2091.
5,10-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1,3H)-
- 26
dionylium tetrafluoroborate 5+‚BF4
,
which is a vinylogous
compound of 4c+‚BF4-, to involve 1,6-methano[11]annulenylium
ion 7+ instead of tropylium ion 6+. The cation 7+, which is an
aromatic 10π-electron analogue of 6+, has higher thermody-
namic stability (pKR+ ) 6.2)27 as compared with 6+ (pKR+
)
3.9).28 Due to this property, the cation 5+‚BF4 was expected
-
to exhibit higher thermodynamic stability as compared with
(21) (a) Yoneda, F.; Sakuma, Y.; Nitta, Y. Chem. Lett. 1978, 1177. (b)
Yoneda, F.; Kuroda, K.; Tanaka, K. Chem. Commun. 1984, 1194.
(22) Naya, S.; Nitta, M. Tetrahedron 2003, 59, 7291.
(23) (a) Naya, S.; Miyama, H.; Yasu, K.; Takayasu, T.; Nitta, M.
Tetrahedron 2003, 59, 1811-1821. (b) Naya, S.; Nitta, M. Tetrahedron
2003, 59, 3709.
(17) (a) Imanishi, T.; Hamano, Y.; Yoshikawa, H.; Iwata, C. J. Chem.
Soc., Chem. Commun. 1988, 473. (b) Obika, S.; Nishiyama, T.; Tatematsu,
S.; Miyashita, K.; Iwata, C.; Imanishi, T. Tetrahedron 1997, 53, 593. (c)
Obika, S.; Nishiyama, T.; Tatematsu, S.; Miyashita, K.; Imanishi, T. Chem.
Lett. 1996, 853.
(18) Ohnishi, Y.; Kagami, M.; Ohno, A. J. Am. Chem. Soc. 1975, 97,
4766.
(19) Endo, T.; Hayashi, Y. Okawara, M. Chem. Lett. 1977, 391.
(20) Ohno, A.; Kashiwagi, M.; Ishihara, Y.; Ushida, S.; Oka, S.
Tetrahedron 1986, 42, 961. Mikata, Y.; Mizukami, K.; Hayashi, K.;
Matsumoto, S.; Yano, S.; Yamazaki, N.; Ohno, A. J. Org. Chem. 2001,
66, 1590.
(24) Naya, S.; Nitta, M. Tetrahedron 2004, 60, 9139.
(25) Mitsumoto, Y.; Nitta, M. J. Org. Chem. 2004, 69, 1256.
(26) Naya, S.; Warita, M.; Mitsumoto, Y.; Nitta, M. J. Org. Chem. 2004,
69, 9184.
(27) (a) Grimme, W.; Hoffmann, H.; Vogel, E. Angew. Chem., Int. Ed.
Engl. 1965, 4, 354. (b) Vogel, E.; Feldmann, R.; Du¨wel, H. Tetrahedron
Lett. 1970, 1, 1941.
J. Org. Chem, Vol. 71, No. 7, 2006 2691