Angewandte
Chemie
359, C33; d)B. Becker, R. Corriu, C. GuØrin, B. J. L. Henner, J.
Organomet.Chem. 1989, 369, 147.
[17] M. J. Bearpark, G. S. McGrady, P. D. Prince, J. W. Steed, J.Am.
Chem.Soc. 2001, 123, 7737.
[18] a)J. Boyer, R. Corriu, R. Perz, C. Reye, Tetrahedron 1981, 37,
2165; b)J. Boyer, R. Corriu, R. Perz, M. Poirier, C. Reye,
Synthesis 1981, 558; c)R. Schiffers, H. B. Kagan, Synlett 1997, 10,
1175; d)C. Chuit, R. Corriu, C. Reye, C. Young, Chem.Rev.
1993, 93, 1371.
[19] a)J. A. Morrison, M. A. Ring, Inorg.Chem. 1967, 6, 100; b)M.
Itoh, K. Inoue, J. Ishikawa, K. Iwata, J.Organomet.Chem. 2001,
629, 1.
Keywords: alkaline-earth metals · homogeneous catalysis ·
hydrides · hydrosilylation · silanides
.
[1] I. Ojima, Z. Li, J. Zhu in The Chemistry of Organosilicon
Compounds, Vol.2 (Eds.: Z. Rappoport, Y. Apeloig), Wiley,
New York, 1998, p. 1687.
[2] D. A. Armitage in Comprehensive Organometallic Chemistry,
Vol.2 (Eds.: F. G. A. Stone, E. W. Abel), Pergamon, Oxford,
1982, p. 115.
[3] J. L. Speier, Adv.Organomet.Chem. 1979, 17, 407.
[4] a)B. D. Karstedt, (General Electric), US Patent 3 715 334, 1973;
b)P. B. Hitchcock, M. F. Lappert, N. J. W. Warhurst, Angew.
Chem. 1991, 103, 439; Angew.Chem.Int.Ed.Engl. 1991, 30, 438.
[5] It has been suggested that this is due to the formation of colloidal
Pt species: a)J. Stein, L. N. Lewis, Y. Gao, R. A. Scott, J.Am.
Chem.Soc. 1999, 121, 3693; b)I. E. Markó, S. StØrin, O. Buisine,
G. Berthon, G. Michaud, B. Tinant, J.-P. Declercq, Adv.Synth.
Catal. 2004, 346, 1429.
[20] Reaction of 4 with neat PhSiH3 (20-fold excess; 508C)gave the
initiation product 5 and resulted in gas development. Analysis of
the product showed Ph2SiH2 and minor amounts of Ph3SiH. The
evolved gas, which ignited spontaneously in air, was quenched in
ethanol (with catalytical amounts of LiOEt)and gave Si (OEt)4.
R
No sign of dehydropolymerization reactions (2PhSiH3!
PhSiH2SiH2Ph + H2)were observed.
[21] Z. Hou, Y. Zhang, M. Nishiura, Y. Wakatsuki, Organometallics
2003, 22, 129.
[22] The stability of Ca2+·6THF ions is well known: a)W. L.
Driessen, M. Den Heijer, Inorg.Chim.Acta 1979, 33, 261; b)S.
[6] a)P.-F. Lu, L. Brard, Y. Li, T. J. Marks, J.Am.Chem.Soc. 1995,
117, 7157; b)H. Schumann, M. R. Keitsch, J. Demtschuk, G. A.
Molander, J.Organomet.Chem.
1999, 582, 70; c)T. I.
Harder, F. Feil, T. Repo, Chem.Eur.J.
Perruchas, F. Simon, S. Uriel, N. Avarvari, K. Boubekeur, P.
Batail, J.Organomet.Chem. 2002, 643–644, 301; d)I. G.
2002, 8, 1991; c)S.
Gountchev, T. D. Tilley, Organometallics 1999, 18, 5661;
d)A. A. Trifonov, T. P. Spaniol, J. Okuda, Organometallics
2001, 20, 4869; e)O. Tardif, M. Nishiura, Z. Hou, Tetrahedron
2003, 59, 10525; f)Y. Horino, T. Livinghouse, Organometallics
2004, 23, 12.
Fedushkin, A. N. Lukoyanov, S. Dechert, H. Schumann, Eur.J.
Inorg.Chem. 2004, 12, 2421; e)S. Harder, S. Mꢀller, E. Hꢀbner,
Organometallics 2004, 23, 178.
[7] M. Kobayashi, M. Itoh, Chem.Lett. 1996, 1013.
[23] F. Feil, S. Harder, Organometallics 2001, 20, 4616.
[8] a)K. Oertle, H. Wetter, Tetrahedron Lett. 1985, 26, 5511; b)M.
Rubin, T. Schwier, V. Gevorgyan, J.Org.Chem. 2002, 67, 1936.
[9] a)R. A. Williams, T. P. Hanusa, J. C. Huffman, Organometallics
1990, 9, 1128; b)M. Rieckhoff, U. Pieper, D. Stalke, F. T.
Edelmann, Angew.Chem. 1993, 105, 1102; Angew.Chem.Int.
Ed.Engl. 1993, 32, 1079; c)C. Eaborn, P. B. Hitchcock, K. Izod,
Z.-R. Lu, J. D. Smith, Organometallics 1996, 15, 4783; d)F.
Weber, H. Sitzmann, M. Schultz, C. D. Sofield, R. A. Andersen,
Organometallics 2002, 21, 3139; e)S. Harder, Angew.Chem.
2004, 116, 2768; Angew.Chem.Int.Ed. 2004, 43, 2714.
[10] a)S. Harder, F. Feil, A. Weeber, Organometallics 2001, 20, 1044;
b)F. Feil, S. Harder, Angew.Chem. 2001, 113, 4391; Angew.
Chem.Int.Ed. 2001, 40, 4261.
[11] Z. Zhong, P. J. Dijkstra, C. Birg, M. Westerhausen, J. Feijen,
Macromolecules 2001, 34, 3863; M. H. Chisholm, J. C. Gallucci,
K. Phomphrai, Inorg.Chem. 2004, 43, 6717.
[12] M. R. Crimmin, M. S. Hill, J.Am.Chem.Soc. 2005, 127, 2043.
[13] J. Brettar, F. Buch, S. Harder, unpublished results.
[14] Reaction of [(DMAT)2Ca]·2THF (2)with one equivalent of
PhSiH3 cleanly yields PhH2Si(DMAT)and a clear yellow
G
solution presumably of [(DMAT)CaH]. Attempted crystalliza-
tion of this product resulted in large yellow crystalline blocks
which were determined to be 2. The mother liquor was still
largely clear at this stage and no fine CaH2 precipitate could be
detected. The mother liquor gave more well-defined crystals of 2
after repeated concentration and must have consisted of a
soluble hydride-rich Ca cluster [{(DMAT)<1CaH>1}n] at this
stage. At later stages, a fine white powder precipitated, which
reacts vigorously with ethanol under gas evolution. Soluble
hydride-rich clusters have been recently observed in lanthanide
chemistry; for a review, see: Z. Hou, Bull.Chem.Soc.Jpn. 2003,
76, 2253.
[15] A. M. LaPointe, F. C. Rix, M. Brookhart, J.Am.Chem.Soc.
1997, 119, 906, and references therein.
[16] a)D. J. Hajdasz, R. R. Squires, J.Am.Chem.Soc.
1986, 108,
3139; b)J. L. Brefort, R. Corriu, C. GuØrin, B. Henner, J.
Organomet.Chem. 1989, 370, 9; c)B. Becker, R. Corriu, C.
GuØrin, B. J. L. Henner, Q. Wang, J.Organomet.Chem. 1989,
Angew. Chem. Int. Ed. 2006, 45, 2741 –2745
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2745