Communication
ChemComm
In conclusion, [Rh2(m-DTolF)2(L)2]2+ (L = dpq, phen) complexes
were shown to exhibit electrocatalytic activity under a CO2
atmosphere. The products HCOOH and H2 were formed upon
bulk electrolysis of the complexes in acetonitrile in the presence of
CO2 and water. Further analysis indicated that catalysis occurred at
the metal center, and not on the diimine ligand. Complex 1 is a less
active catalyst than 2, likely because the pyrazine moiety of the dpq
ligands in 1 becomes protonated and consumes the substrate. The
active catalytic species, Rh2II,I, however, is formed at a more positive
potential in 1, so catalysis may occur at a lower overpotential than
in 2. Both complexes are selective for proton reduction to H2 under
the current conditions.
15 S.-N. Pun, W.-H. Chung, K.-M. Lam, P.-H. Chan, K.-Y. Wong, C.-M.
Che, Y.-Y. Chen and S.-M. Peng, J. Chem. Soc., Dalton Trans., 2002,
575–583.
16 M. D. Rail and L. A. Berben, J. Am. Chem. Soc., 2011, 133, 18577–18579.
17 P. Kang, C. Cheng, Z. Chen, C. K. Schauer, T. J. Meyer and
M. Brookhart, J. Am. Chem. Soc., 2012, 134, 5500–5503.
18 S. T. Ahn, E. A. Bielinski, E. M. Lane, Y. Chen, W. H. Bernskoetter,
N. Hazari and G. T. Palmore, Chem. Commun., 2015, 51, 5947–5950.
19 T. Yoshida, D. L. Thorn, T. Okano, J. A. Ibers and S. Otsuka, J. Am.
Chem. Soc., 1979, 101, 4212–4221.
20 S. Slater and J. H. Wagenknecht, J. Am. Chem. Soc., 1984, 106,
5367–5368.
21 C. M. Bolinger, B. P. Sullivan, D. Conrad, J. A. Gilbert, N. Story and
T. J. Meyer, J. Chem. Soc., Chem. Commun., 1985, 796–797.
22 C. M. Bolinger, N. Story, B. P. Sullivan and T. J. Meyer, Inorg. Chem.,
1988, 27, 4582–4587.
23 P. Paul, B. Tyagi, A. K. Bilakhiya, M. M. Bhadbhade, E. Suresh and
G. Ramachandraiah, Inorg. Chem., 1998, 37, 5733–5742.
24 C. Caix, S. Chardon-Noblat and A. Deronzier, J. Electroanal. Chem.,
1997, 434, 163–170.
The authors are grateful for the generous support of the
U.S. Department of Energy, Office of Science, Office of Basic
Research (CT: DE-SC0010542; KRD: DE-SC0010721).
25 Z. Li, N. A. Leed, N. M. Dickson-Karn, K. R. Dunbar and C. Turro,
Chem. Sci., 2014, 5, 727–737.
26 (a) P. M. Bradley, B. E. Bursten and C. Turro, Inorg. Chem., 2001, 40,
1376–1379; (b) P. K.-L. Fu, P. M. Bradley and C. Turro, Inorg. Chem.,
2001, 40, 2476–2477.
Notes and references
1 M. Aresta and A. Dibenedetto, Dalton Trans., 2007, 2975–2992.
2 J. Qiao, Y. Liu, F. Hong and J. Zhang, Chem. Soc. Rev., 2014, 43, 27 D. A. Lutterman, N. N. Degtyareva, D. H. Johnston, J. C. Gallucci,
631–675. J. L. Eglin and C. Turro, Inorg. Chem., 2005, 44, 5388–5396.
3 C. Costentin, M. Robert and J.-M. Saveant, Chem. Soc. Rev., 2013, 42, 28 T. A. White, S. E. Witt, Z. Li, K. R. Dunbar and C. Turro, Inorg. Chem.,
2423–2436. 2015, 54, 10042–10048.
4 E. E. Benson, C. P. Kubiak, A. J. Sathrum and J. M. Smieja, Chem. 29 J. V. Caspar and T. J. Meyer, Inorg. Chem., 1983, 22, 2444–2453.
Soc. Rev., 2009, 38, 89–99.
5 S. Moret, P. J. Dyson and G. Laurenczy, Nat. Commun., 2014, 5, 1–7.
30 A. Delgadillo, P. Romo, A. M. Leiva and B. Loeb, Helv. Chim. Acta,
2003, 86, 2110–2120.
6 J. R. Pugh, M. R. M. Bruce, B. P. Sullivan and T. J. Meyer, Inorg. 31 A. A. Vlcek, E. S. Dodsworth, W. J. Pietro and A. B. P. Lever,
Chem., 1991, 30, 86–91. Inorg. Chem., 1995, 34, 1906–1913.
7 L. Chen, Z. Guo, X.-G. Wei, C. Gallenkamp, J. Bonin, E. Anxolabehere- 32 Y. Tomita, S. Teruya, O. Koga and Y. Hori, J. Electrochem. Soc., 2000,
Mallart, K.-C. Lau, T.-C. Lau and M. Robert, J. Am. Chem. Soc., 2015,
137, 10918–10921.
8 M. R. M. Bruce, E. Megehee, B. P. Sullivan, H. H. Thorp, T. R. O’Toole,
147, 4164–4167.
33 C. T. J. Low, F. C. Walsh, M. H. Chakrabarti, M. A. Hashim and
M. A. Hussain, Carbon, 2013, 54, 1–21.
A. Downard, J. R. Pugh and T. J. Meyer, Inorg. Chem., 1992, 31, 34 A. M. Abdelkader, A. J. Cooper, R. A. W. Dryfe and I. A. Kinloch,
4864–4873. Nanoscale, 2015, 7, 6944–6956.
9 H. Ishida, K. Tanaka and T. Tanaka, Organometallics, 1987, 6, 181–186. 35 Z. Y. Xia, G. Giambastiani, C. Christodoulou, M. V. Nardi, N. Koch,
10 P. Kang, T. J. Meyer and M. Brookhart, Chem. Sci., 2013, 4, 3497–3502.
11 S. C. Rasmussen, M. M. Richter, E. Yi, H. Place and K. J. Brewer,
Inorg. Chem., 1990, 29, 3926–3932.
12 H. Ishida, H. Tanaka, K. Tanaka and T. Tanaka, J. Chem. Soc., Chem.
Commun., 1987, 131–132.
13 J. P. Collin, A. Jouaiti and J. P. Sauvage, Inorg. Chem., 1988, 27,
1986–1990.
E. Treossi, V. Bellani, S. Pezzini, F. Corticelli, V. Morandi, A. Zanelli
and V. Palermo, ChemPlusChem, 2014, 79, 439–446.
36 S. M. Ng, C. Yin, C. H. Yeung, T. C. Chan and C. P. Lau, Eur. J. Inorg.
Chem., 2004, 1788–1793.
37 Z. Chen, C. Chen, D. R. Weinberg, P. Kang, J. J. Concepcion,
D. P. Harrison, M. S. Brookhart and T. J. Meyer, Chem. Commun.,
2011, 47, 12607–12609.
˜
14 C. Arana, S. Yan, M. Keshavarz-K, K. T. Potts and H. D. Abruna, 38 J. D. Aguirre, D. A. Lutterman, A. M. Angeles-Boza, K. R. Dunbar and
Inorg. Chem., 1992, 31, 3680–3682.
C. Turro, Inorg. Chem., 2007, 46, 7494–7502.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016